diff --git a/.gitignore b/.gitignore index c679aa5..ded8665 100644 --- a/.gitignore +++ b/.gitignore @@ -1,4 +1,6 @@ -/dataset/cats -/dataset/cats.zip +/dataset /output -/yolov8n.pt \ No newline at end of file +/yolov8n.pt +/runs/detect/* +!/runs/detect/cat_detection +!/runs/detect/val \ No newline at end of file diff --git a/cat_detect.ipynb b/cat_detect.ipynb index c246f9e..80cac79 100644 --- a/cat_detect.ipynb +++ b/cat_detect.ipynb @@ -2,63 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Requirement already satisfied: ultralytics in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (8.3.65)\n", - "Requirement already satisfied: numpy>=1.23.0 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from ultralytics) (1.26.3)\n", - "Requirement already satisfied: matplotlib>=3.3.0 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from ultralytics) (3.10.0)\n", - "Requirement already satisfied: opencv-python>=4.6.0 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from ultralytics) (4.7.0.68)\n", - "Requirement already satisfied: pillow>=7.1.2 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from ultralytics) (9.4.0)\n", - "Requirement already satisfied: pyyaml>=5.3.1 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from ultralytics) (6.0.1)\n", - "Requirement already satisfied: requests>=2.23.0 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from ultralytics) (2.31.0)\n", - "Requirement already satisfied: scipy>=1.4.1 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from ultralytics) (1.14.1)\n", - "Requirement already satisfied: torch>=1.8.0 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from ultralytics) (2.5.1+cu124)\n", - "Requirement already satisfied: torchvision>=0.9.0 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from ultralytics) (0.20.1+cu124)\n", - "Requirement already satisfied: tqdm>=4.64.0 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from ultralytics) (4.66.5)\n", - "Requirement already satisfied: psutil in c:\\users\\danie\\appdata\\roaming\\python\\python310\\site-packages (from ultralytics) (5.9.5)\n", - "Requirement already satisfied: py-cpuinfo in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from ultralytics) (9.0.0)\n", - "Requirement already satisfied: pandas>=1.1.4 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from ultralytics) (2.0.1)\n", - "Requirement already satisfied: seaborn>=0.11.0 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from ultralytics) (0.13.2)\n", - "Requirement already satisfied: ultralytics-thop>=2.0.0 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from ultralytics) (2.0.14)\n", - "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (1.0.7)\n", - "Requirement already satisfied: cycler>=0.10 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (0.11.0)\n", - "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (4.39.3)\n", - "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (1.4.4)\n", - "Requirement already satisfied: packaging>=20.0 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (23.0)\n", - "Requirement already satisfied: pyparsing>=2.3.1 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (3.0.9)\n", - "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from matplotlib>=3.3.0->ultralytics) (2.8.2)\n", - "Requirement already satisfied: pytz>=2020.1 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from pandas>=1.1.4->ultralytics) (2023.3)\n", - "Requirement already satisfied: tzdata>=2022.1 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from pandas>=1.1.4->ultralytics) (2023.3)\n", - "Requirement already satisfied: charset-normalizer<4,>=2 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from requests>=2.23.0->ultralytics) (3.1.0)\n", - "Requirement already satisfied: idna<4,>=2.5 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from requests>=2.23.0->ultralytics) (3.4)\n", - "Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from requests>=2.23.0->ultralytics) (2.0.2)\n", - "Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from requests>=2.23.0->ultralytics) (2022.12.7)\n", - "Requirement already satisfied: filelock in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from torch>=1.8.0->ultralytics) (3.13.1)\n", - "Requirement already satisfied: typing-extensions>=4.8.0 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from torch>=1.8.0->ultralytics) (4.9.0)\n", - "Requirement already satisfied: networkx in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from torch>=1.8.0->ultralytics) (3.2.1)\n", - "Requirement already satisfied: jinja2 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from torch>=1.8.0->ultralytics) (3.1.2)\n", - "Requirement already satisfied: fsspec in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from torch>=1.8.0->ultralytics) (2024.2.0)\n", - "Requirement already satisfied: sympy==1.13.1 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from torch>=1.8.0->ultralytics) (1.13.1)\n", - "Requirement already satisfied: mpmath<1.4,>=1.1.0 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from sympy==1.13.1->torch>=1.8.0->ultralytics) (1.3.0)\n", - "Requirement already satisfied: colorama in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from tqdm>=4.64.0->ultralytics) (0.4.6)\n", - "Requirement already satisfied: six>=1.5 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from python-dateutil>=2.7->matplotlib>=3.3.0->ultralytics) (1.16.0)\n", - "Requirement already satisfied: MarkupSafe>=2.0 in c:\\users\\danie\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from jinja2->torch>=1.8.0->ultralytics) (2.1.2)\n", - "Note: you may need to restart the kernel to use updated packages.\n" - ] - } - ], - "source": [ - "%pip install ultralytics " - ] - }, - { - "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -75,31 +19,16 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Downloading https://github.com/ultralytics/assets/releases/download/v8.3.0/yolov8n.pt to 'yolov8n.pt'...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "100%|██████████| 6.25M/6.25M [00:00<00:00, 10.3MB/s]\n" - ] - } - ], + "outputs": [], "source": [ "model = YOLO(\"yolov8n.pt\").to('cuda')" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -116,568 +45,7050 @@ }, { "cell_type": "code", - "execution_count": 175, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ - "im = Image.open(\"dataset/1818949000-IMG-20240118-WA0001.jpg\")" + "# Define Paths\n", + "images_folder = 'dataset/cats' # Replace with your image folder path\n", + "output_folder = 'output/' # Folder to save cropped cat images\n", + "os.makedirs(output_folder, exist_ok=True)" ] }, { "cell_type": "code", - "execution_count": 176, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ - "im = transforms.ToTensor()(im)\n", - "# im = im.numpy()" - ] - }, - { - "cell_type": "code", - "execution_count": 130, - "metadata": {}, - "outputs": [], - "source": [ - "im = im.reshape(-1, im.shape[0], im.shape[1], im.shape[2])\n", + "# Function to save bounding boxes in YOLO format\n", + "def save_yolo_format(bounding_boxes, filename, image_width, image_height):\n", + " with open(filename, 'w') as f:\n", + " for box in bounding_boxes:\n", + " class_id = box['class_id']\n", + " # Normalize the bounding box coordinates\n", + " x_min = box['x_min']\n", + " y_min = box['y_min']\n", + " x_max = box['x_max']\n", + " y_max = box['y_max']\n", + " \n", + " # Center and size of the bounding box\n", + " x_center = (x_min + x_max) / 2.0 / image_width\n", + " y_center = (y_min + y_max) / 2.0 / image_height\n", + " width = (x_max - x_min) / float(image_width)\n", + " height = (y_max - y_min) / float(image_height)\n", "\n", - "# apply resize to image 3, 640, 640\n" - ] - }, - { - "cell_type": "code", - "execution_count": 161, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(1599, 899, 3)" - ] - }, - "execution_count": 161, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "im.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 116, - "metadata": {}, - "outputs": [], - "source": [ - "def resize_and_pad_image(im, stride=32):\n", - " # Get original dimensions\n", - " _, _, h, w = im.shape\n", - "\n", - " # Calculate the nearest divisible dimensions\n", - " new_h = int(np.ceil(h / stride) * stride)\n", - " new_w = int(np.ceil(w / stride) * stride)\n", - "\n", - " # Resize the image while maintaining aspect ratio\n", - " resize_transform = transforms.Compose([\n", - " transforms.ToPILImage(),\n", - " transforms.Resize((new_h, new_w)), # Resize to divisible dimensions\n", - " transforms.ToTensor()\n", - " ])\n", - "\n", - " # Apply transform to the tensor\n", - " im_resized = resize_transform(im.squeeze(0)) # Remove batch dimension for processing\n", - "\n", - " # Add batch dimension back\n", - " im_resized = im_resized.unsqueeze(0)\n", - " return im_resized" - ] - }, - { - "cell_type": "code", - "execution_count": 117, - "metadata": {}, - "outputs": [], - "source": [ - "im = resize_and_pad_image(im)" - ] - }, - { - "cell_type": "code", - "execution_count": 177, - "metadata": {}, - "outputs": [], - "source": [ - "im = im.numpy()" - ] - }, - { - "cell_type": "code", - "execution_count": 180, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(1599, 899, 3)" - ] - }, - "execution_count": 180, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "im.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 179, - "metadata": {}, - "outputs": [], - "source": [ - "im = im.transpose(1,2,0)" - ] - }, - { - "cell_type": "code", - "execution_count": 181, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "YOLO(\n", - " (model): DetectionModel(\n", - " (model): Sequential(\n", - " (0): Conv(\n", - " (conv): Conv2d(3, 16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (1): Conv(\n", - " (conv): Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (2): C2f(\n", - " (cv1): Conv(\n", - " (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (cv2): Conv(\n", - " (conv): Conv2d(48, 32, kernel_size=(1, 1), stride=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (m): ModuleList(\n", - " (0): Bottleneck(\n", - " (cv1): Conv(\n", - " (conv): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (cv2): Conv(\n", - " (conv): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (3): Conv(\n", - " (conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (4): C2f(\n", - " (cv1): Conv(\n", - " (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (cv2): Conv(\n", - " (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (m): ModuleList(\n", - " (0-1): 2 x Bottleneck(\n", - " (cv1): Conv(\n", - " (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (cv2): Conv(\n", - " (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (5): Conv(\n", - " (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (6): C2f(\n", - " (cv1): Conv(\n", - " (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (cv2): Conv(\n", - " (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (m): ModuleList(\n", - " (0-1): 2 x Bottleneck(\n", - " (cv1): Conv(\n", - " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (cv2): Conv(\n", - " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (7): Conv(\n", - " (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (8): C2f(\n", - " (cv1): Conv(\n", - " (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (cv2): Conv(\n", - " (conv): Conv2d(384, 256, kernel_size=(1, 1), stride=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (m): ModuleList(\n", - " (0): Bottleneck(\n", - " (cv1): Conv(\n", - " (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (cv2): Conv(\n", - " (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (9): SPPF(\n", - " (cv1): Conv(\n", - " (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (cv2): Conv(\n", - " (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (m): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)\n", - " )\n", - " (10): Upsample(scale_factor=2.0, mode='nearest')\n", - " (11): Concat()\n", - " (12): C2f(\n", - " (cv1): Conv(\n", - " (conv): Conv2d(384, 128, kernel_size=(1, 1), stride=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (cv2): Conv(\n", - " (conv): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (m): ModuleList(\n", - " (0): Bottleneck(\n", - " (cv1): Conv(\n", - " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (cv2): Conv(\n", - " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (13): Upsample(scale_factor=2.0, mode='nearest')\n", - " (14): Concat()\n", - " (15): C2f(\n", - " (cv1): Conv(\n", - " (conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (cv2): Conv(\n", - " (conv): Conv2d(96, 64, kernel_size=(1, 1), stride=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (m): ModuleList(\n", - " (0): Bottleneck(\n", - " (cv1): Conv(\n", - " (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (cv2): Conv(\n", - " (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (16): Conv(\n", - " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (17): Concat()\n", - " (18): C2f(\n", - " (cv1): Conv(\n", - " (conv): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (cv2): Conv(\n", - " (conv): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (m): ModuleList(\n", - " (0): Bottleneck(\n", - " (cv1): Conv(\n", - " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (cv2): Conv(\n", - " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (19): Conv(\n", - " (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (20): Concat()\n", - " (21): C2f(\n", - " (cv1): Conv(\n", - " (conv): Conv2d(384, 256, kernel_size=(1, 1), stride=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (cv2): Conv(\n", - " (conv): Conv2d(384, 256, kernel_size=(1, 1), stride=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (m): ModuleList(\n", - " (0): Bottleneck(\n", - " (cv1): Conv(\n", - " (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (cv2): Conv(\n", - " (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " )\n", - " )\n", - " )\n", - " (22): Detect(\n", - " (cv2): ModuleList(\n", - " (0): Sequential(\n", - " (0): Conv(\n", - " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (1): Conv(\n", - " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))\n", - " )\n", - " (1): Sequential(\n", - " (0): Conv(\n", - " (conv): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (1): Conv(\n", - " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))\n", - " )\n", - " (2): Sequential(\n", - " (0): Conv(\n", - " (conv): Conv2d(256, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (1): Conv(\n", - " (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))\n", - " )\n", - " )\n", - " (cv3): ModuleList(\n", - " (0): Sequential(\n", - " (0): Conv(\n", - " (conv): Conv2d(64, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (1): Conv(\n", - " (conv): Conv2d(80, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (2): Conv2d(80, 80, kernel_size=(1, 1), stride=(1, 1))\n", - " )\n", - " (1): Sequential(\n", - " (0): Conv(\n", - " (conv): Conv2d(128, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (1): Conv(\n", - " (conv): Conv2d(80, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (2): Conv2d(80, 80, kernel_size=(1, 1), stride=(1, 1))\n", - " )\n", - " (2): Sequential(\n", - " (0): Conv(\n", - " (conv): Conv2d(256, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (1): Conv(\n", - " (conv): Conv2d(80, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (act): SiLU(inplace=True)\n", - " )\n", - " (2): Conv2d(80, 80, kernel_size=(1, 1), stride=(1, 1))\n", - " )\n", - " )\n", - " (dfl): DFL(\n", - " (conv): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " )\n", - " )\n", - " )\n", - " )\n", - ")" - ] - }, - "execution_count": 181, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.eval()" - ] - }, - { - "cell_type": "code", - "execution_count": 234, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "0: 640x384 (no detections), 23.0ms\n", - "Speed: 23.6ms preprocess, 23.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 384)\n" - ] - } - ], - "source": [ - "with torch.no_grad():\n", - " pred = model(im)" - ] - }, - { - "cell_type": "code", - "execution_count": 241, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\1818949000-IMG-20240118-WA0001.jpg: 640x384 1 cat, 1 chair, 29.5ms\n", - "Speed: 5.0ms preprocess, 29.5ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 384)\n" - ] - } - ], - "source": [ - "results = model.predict(source=\"dataset/1818949000-IMG-20240118-WA0001.jpg\", save=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 242, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Class: cat, Confidence: 0.79, Box: 1.4070484638214111, 389.7481994628906, 766.0083618164062, 1191.5501708984375\n", - "Class: chair, Confidence: 0.27, Box: 0.0, 255.45545959472656, 884.272216796875, 1599.0\n" - ] - } - ], - "source": [ - "for result in results:\n", - " boxes = result.boxes # Bounding box information\n", - "\n", - " for box in boxes:\n", - " # Box coordinates\n", - " x_min, y_min, x_max, y_max = box.xyxy[0] # Format: [x_min, y_min, x_max, y_max]\n", - "\n", - " # Confidence score\n", - " confidence = box.conf[0]\n", - "\n", - " # Class ID or name\n", - " class_id = box.cls[0]\n", - " class_name = model.names[int(class_id)] # Convert class ID to class name\n", - "\n", - " print(f\"Class: {class_name}, Confidence: {confidence:.2f}, Box: {x_min}, {y_min}, {x_max}, {y_max}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 251, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 251, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "image = cv2.imread(\"dataset/1818949000-IMG-20240118-WA0001.jpg\")\n", - "for result in results:\n", - " boxes = result.boxes\n", - "\n", - " for box in boxes:\n", - " x_min, y_min, x_max, y_max = map(int, box.xyxy[0])\n", - " class_id = int(box.cls[0])\n", - " class_name = model.names[class_id]\n", - " confidence = box.conf[0]\n", - "\n", - " if confidence > 0.7:\n", - "\n", - " # Format the label with class name and confidence\n", - " label = f\"{class_name} {confidence:.2f}\"\n", - "\n", - " # Draw the bounding box\n", - " cv2.rectangle(image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)\n", - " cv2.putText(image, label, (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)\n", - "\n", - "# Save or display the image\n", - "cv2.imwrite(\"output/output.jpg\", image)" + " # Write in YOLO format: class_id x_center y_center width height\n", + " f.write(f\"{class_id} {x_center} {y_center} {width} {height}\\n\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\1818949000-IMG-20240118-WA0001.jpg: 640x384 1 cat, 1 chair, 34.0ms\n", + "Speed: 5.0ms preprocess, 34.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 384)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_103335.jpg: 640x480 1 cat, 1 bear, 2 chairs, 147.3ms\n", + "Speed: 7.0ms preprocess, 147.3ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_141622.jpg: 640x480 1 person, 2 cats, 61.6ms\n", + "Speed: 7.0ms preprocess, 61.6ms inference, 4.4ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_184600.jpg: 640x480 1 person, 1 cat, 1 remote, 1 book, 1 teddy bear, 70.0ms\n", + "Speed: 8.0ms preprocess, 70.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_195833.jpg: 640x480 1 cat, 1 bed, 15.1ms\n", + "Speed: 5.0ms preprocess, 15.1ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_200052.jpg: 640x480 1 person, 1 cat, 13.0ms\n", + "Speed: 2.0ms preprocess, 13.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_200057.jpg: 640x480 1 cat, 1 bed, 11.0ms\n", + "Speed: 4.0ms preprocess, 11.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_200102.jpg: 640x480 1 person, 1 cat, 1 bed, 18.5ms\n", + "Speed: 5.0ms preprocess, 18.5ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201439.jpg: 640x480 1 cat, 13.0ms\n", + "Speed: 2.0ms preprocess, 13.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201442.jpg: 640x480 1 cat, 1 bottle, 16.0ms\n", + "Speed: 3.9ms preprocess, 16.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201443.jpg: 640x480 1 cat, 1 bottle, 24.2ms\n", + "Speed: 4.8ms preprocess, 24.2ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201446.jpg: 640x480 1 cat, 1 bed, 82.0ms\n", + "Speed: 6.0ms preprocess, 82.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201447.jpg: 640x480 1 cat, 1 dog, 39.0ms\n", + "Speed: 3.7ms preprocess, 39.0ms inference, 10.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201448.jpg: 640x480 1 cat, 1 dog, 40.0ms\n", + "Speed: 6.0ms preprocess, 40.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201452.jpg: 640x480 1 cat, 1 handbag, 24.7ms\n", + "Speed: 5.0ms preprocess, 24.7ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201454.jpg: 640x480 1 cat, 1 dog, 25.0ms\n", + "Speed: 4.0ms preprocess, 25.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201458.jpg: 640x480 1 cat, 1 handbag, 30.1ms\n", + "Speed: 4.0ms preprocess, 30.1ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201503.jpg: 640x480 1 dog, 1 handbag, 26.0ms\n", + "Speed: 5.0ms preprocess, 26.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201510.jpg: 640x480 1 cat, 1 handbag, 24.5ms\n", + "Speed: 5.0ms preprocess, 24.5ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_232857.jpg: 640x480 1 cat, 1 suitcase, 126.9ms\n", + "Speed: 5.0ms preprocess, 126.9ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240310_140207.jpg: 640x480 1 cat, 10.4ms\n", + "Speed: 4.0ms preprocess, 10.4ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240311_195350.jpg: 640x480 1 cat, 1 handbag, 1 bed, 12.0ms\n", + "Speed: 2.0ms preprocess, 12.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240311_195352.jpg: 640x480 1 cat, 12.0ms\n", + "Speed: 4.0ms preprocess, 12.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240311_195357.jpg: 640x480 1 cat, 1 chair, 17.0ms\n", + "Speed: 4.0ms preprocess, 17.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240311_195403.jpg: 640x480 1 cat, 20.0ms\n", + "Speed: 4.0ms preprocess, 20.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_180219.jpg: 640x480 1 cat, 1 couch, 28.0ms\n", + "Speed: 4.0ms preprocess, 28.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185655.jpg: 640x480 1 cat, 1 toilet, 77.6ms\n", + "Speed: 6.0ms preprocess, 77.6ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185658.jpg: 640x480 2 cats, 16.0ms\n", + "Speed: 4.0ms preprocess, 16.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185700.jpg: 640x480 4 cats, 1 bowl, 17.0ms\n", + "Speed: 4.0ms preprocess, 17.0ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185702.jpg: 640x480 2 cats, 12.0ms\n", + "Speed: 2.0ms preprocess, 12.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185718(0).jpg: 640x480 2 cats, 1 bowl, 1 chair, 19.0ms\n", + "Speed: 4.1ms preprocess, 19.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185718.jpg: 640x480 2 cats, 1 bowl, 17.0ms\n", + "Speed: 4.0ms preprocess, 17.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185719.jpg: 640x480 1 cat, 70.0ms\n", + "Speed: 5.0ms preprocess, 70.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185729.jpg: 640x480 1 cat, 44.0ms\n", + "Speed: 4.0ms preprocess, 44.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185730.jpg: 640x480 1 cat, 1 chair, 29.0ms\n", + "Speed: 4.0ms preprocess, 29.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185733.jpg: 640x480 1 cat, 30.4ms\n", + "Speed: 6.0ms preprocess, 30.4ms inference, 8.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185734.jpg: 640x480 1 cat, 1 chair, 26.0ms\n", + "Speed: 4.0ms preprocess, 26.0ms inference, 4.9ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240313_203246.jpg: 640x480 1 person, 1 cat, 1 bed, 24.0ms\n", + "Speed: 4.2ms preprocess, 24.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240313_203248.jpg: 640x480 1 cat, 25.0ms\n", + "Speed: 4.0ms preprocess, 25.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_170048.jpg: 640x480 1 cat, 25.2ms\n", + "Speed: 4.0ms preprocess, 25.2ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_170048_remastered.jpg: 640x480 1 cat, 1 dog, 25.0ms\n", + "Speed: 5.0ms preprocess, 25.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_171004.jpg: 640x480 1 cat, 45.6ms\n", + "Speed: 6.0ms preprocess, 45.6ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_171030.jpg: 640x480 1 dog, 19.0ms\n", + "Speed: 4.7ms preprocess, 19.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_191222.jpg: 640x480 1 cat, 1 chair, 24.0ms\n", + "Speed: 3.0ms preprocess, 24.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_191224(0).jpg: 640x480 1 cat, 1 umbrella, 17.0ms\n", + "Speed: 2.0ms preprocess, 17.0ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_191224.jpg: 640x480 1 cat, 1 bottle, 18.7ms\n", + "Speed: 4.6ms preprocess, 18.7ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_191225.jpg: 640x480 1 cat, 30.9ms\n", + "Speed: 5.0ms preprocess, 30.9ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_191226.jpg: 640x480 1 cat, 60.0ms\n", + "Speed: 4.0ms preprocess, 60.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_191227.jpg: 640x480 1 cat, 52.1ms\n", + "Speed: 7.0ms preprocess, 52.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240316_104313.jpg: 640x480 1 cat, 1 bottle, 9.0ms\n", + "Speed: 3.0ms preprocess, 9.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240316_104328.jpg: 640x480 1 cat, 1 bottle, 1 bowl, 9.0ms\n", + "Speed: 3.0ms preprocess, 9.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240316_104330.jpg: 640x480 1 cat, 1 bottle, 1 bowl, 9.0ms\n", + "Speed: 3.0ms preprocess, 9.0ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240316_104331.jpg: 640x480 1 cat, 9.0ms\n", + "Speed: 2.0ms preprocess, 9.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240316_104334.jpg: 640x480 1 person, 1 dog, 1 tv, 12.0ms\n", + "Speed: 3.1ms preprocess, 12.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240316_220146.jpg: 640x480 1 person, 2 dogs, 93.0ms\n", + "Speed: 4.0ms preprocess, 93.0ms inference, 8.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240316_220153.jpg: 640x480 2 cats, 66.0ms\n", + "Speed: 4.7ms preprocess, 66.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240316_220210.jpg: 640x480 1 person, 3 cats, 61.0ms\n", + "Speed: 3.8ms preprocess, 61.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_002355.jpg: 640x480 1 cat, 87.0ms\n", + "Speed: 4.0ms preprocess, 87.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_002404.jpg: 640x480 1 cat, 72.6ms\n", + "Speed: 5.0ms preprocess, 72.6ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_002407.jpg: 640x480 1 cat, 101.0ms\n", + "Speed: 5.0ms preprocess, 101.0ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_002416.jpg: 640x480 1 cat, 72.0ms\n", + "Speed: 5.0ms preprocess, 72.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_002419.jpg: 640x480 1 cat, 23.0ms\n", + "Speed: 6.0ms preprocess, 23.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204422.jpg: 640x480 1 person, 1 cat, 1 bed, 74.8ms\n", + "Speed: 6.0ms preprocess, 74.8ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204426.jpg: 640x480 1 cat, 1 bear, 1 chair, 31.7ms\n", + "Speed: 6.0ms preprocess, 31.7ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204429.jpg: 640x480 1 cat, 1 chair, 88.7ms\n", + "Speed: 6.0ms preprocess, 88.7ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204431.jpg: 640x480 1 cat, 94.0ms\n", + "Speed: 4.0ms preprocess, 94.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204434.jpg: 640x480 1 cat, 1 bed, 73.2ms\n", + "Speed: 5.0ms preprocess, 73.2ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204436.jpg: 640x480 1 cat, 1 elephant, 10.0ms\n", + "Speed: 2.0ms preprocess, 10.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204501.jpg: 640x480 1 bear, 14.0ms\n", + "Speed: 4.0ms preprocess, 14.0ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204503.jpg: 640x480 1 cat, 13.0ms\n", + "Speed: 3.0ms preprocess, 13.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240318_194443.jpg: 640x480 1 cat, 1 bed, 1 teddy bear, 12.0ms\n", + "Speed: 3.0ms preprocess, 12.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240320_171347.jpg: 640x480 1 bench, 1 cat, 41.6ms\n", + "Speed: 5.0ms preprocess, 41.6ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185912(0).jpg: 640x480 2 teddy bears, 19.0ms\n", + "Speed: 4.0ms preprocess, 19.0ms inference, 14.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185912.jpg: 640x480 1 cat, 1 teddy bear, 13.0ms\n", + "Speed: 4.0ms preprocess, 13.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185914.jpg: 640x480 1 cat, 1 teddy bear, 31.0ms\n", + "Speed: 3.0ms preprocess, 31.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185916.jpg: 640x480 1 cat, 26.0ms\n", + "Speed: 4.0ms preprocess, 26.0ms inference, 7.6ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185917.jpg: 640x480 1 cat, 28.0ms\n", + "Speed: 4.0ms preprocess, 28.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185921.jpg: 640x480 1 cat, 49.3ms\n", + "Speed: 5.0ms preprocess, 49.3ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185922.jpg: 640x480 1 cat, 27.0ms\n", + "Speed: 4.0ms preprocess, 27.0ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185924.jpg: 640x480 1 cat, 30.0ms\n", + "Speed: 4.6ms preprocess, 30.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185950.jpg: 480x640 1 cat, 76.7ms\n", + "Speed: 5.0ms preprocess, 76.7ms inference, 6.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_190008.jpg: 480x640 1 dog, 1 bed, 23.0ms\n", + "Speed: 4.0ms preprocess, 23.0ms inference, 4.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_190014.jpg: 480x640 1 cat, 1 dog, 20.0ms\n", + "Speed: 4.0ms preprocess, 20.0ms inference, 3.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_193424.jpg: 640x480 2 benchs, 1 cat, 1 dining table, 33.5ms\n", + "Speed: 4.0ms preprocess, 33.5ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_193425.jpg: 640x480 1 bench, 46.0ms\n", + "Speed: 4.0ms preprocess, 46.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_193430.jpg: 640x480 1 dog, 25.0ms\n", + "Speed: 5.0ms preprocess, 25.0ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_193431.jpg: 640x480 1 bench, 1 cat, 25.0ms\n", + "Speed: 5.1ms preprocess, 25.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_193433.jpg: 640x480 1 bench, 1 cat, 24.9ms\n", + "Speed: 3.6ms preprocess, 24.9ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_193448.jpg: 640x480 1 surfboard, 49.0ms\n", + "Speed: 5.5ms preprocess, 49.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_193501.jpg: 640x480 (no detections), 9.0ms\n", + "Speed: 2.0ms preprocess, 9.0ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240324_175352.jpg: 640x480 1 cat, 12.0ms\n", + "Speed: 5.0ms preprocess, 12.0ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240324_175354.jpg: 640x480 1 cat, 8.0ms\n", + "Speed: 3.0ms preprocess, 8.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240324_175358.jpg: 640x480 1 cat, 8.0ms\n", + "Speed: 2.0ms preprocess, 8.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240324_175402.jpg: 640x480 1 cat, 9.0ms\n", + "Speed: 3.0ms preprocess, 9.0ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240324_175405.jpg: 640x480 1 cat, 9.0ms\n", + "Speed: 3.0ms preprocess, 9.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240324_175406.jpg: 640x480 1 cat, 13.0ms\n", + "Speed: 3.0ms preprocess, 13.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240324_175407.jpg: 640x480 1 cat, 22.0ms\n", + "Speed: 5.0ms preprocess, 22.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240325_163728.jpg: 640x480 2 cats, 1 laptop, 26.0ms\n", + "Speed: 4.0ms preprocess, 26.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240326_131427.jpg: 640x480 1 cat, 3 chairs, 5 potted plants, 3 vases, 25.0ms\n", + "Speed: 3.0ms preprocess, 25.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240326_131431.jpg: 640x480 1 cat, 1 suitcase, 40.5ms\n", + "Speed: 5.0ms preprocess, 40.5ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240326_183749.jpg: 640x480 1 cat, 9.0ms\n", + "Speed: 3.0ms preprocess, 9.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240326_183757.jpg: 640x480 1 cat, 10.0ms\n", + "Speed: 3.0ms preprocess, 10.0ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240326_183759.jpg: 640x480 1 cat, 10.8ms\n", + "Speed: 3.0ms preprocess, 10.8ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240326_183803.jpg: 640x480 1 cat, 8.0ms\n", + "Speed: 2.0ms preprocess, 8.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240326_183810.jpg: 480x640 1 cat, 10.5ms\n", + "Speed: 2.0ms preprocess, 10.5ms inference, 1.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240327_135547.jpg: 640x480 1 cat, 12.0ms\n", + "Speed: 4.0ms preprocess, 12.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240327_135550.jpg: 640x480 1 cat, 14.0ms\n", + "Speed: 4.0ms preprocess, 14.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240327_135553.jpg: 640x480 1 cat, 1 bed, 81.0ms\n", + "Speed: 7.0ms preprocess, 81.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240327_135555.jpg: 640x480 1 cat, 1 couch, 1 tv, 62.9ms\n", + "Speed: 6.0ms preprocess, 62.9ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240327_135643.jpg: 640x480 1 cat, 10.9ms\n", + "Speed: 3.0ms preprocess, 10.9ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240329_223942(0).jpg: 640x480 1 cat, 19.9ms\n", + "Speed: 4.0ms preprocess, 19.9ms inference, 3.5ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240329_223942.jpg: 640x480 1 cat, 1 chair, 13.0ms\n", + "Speed: 3.0ms preprocess, 13.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240329_223945.jpg: 640x480 1 cat, 16.0ms\n", + "Speed: 3.0ms preprocess, 16.0ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240404_224228.jpg: 640x480 1 cat, 14.0ms\n", + "Speed: 3.0ms preprocess, 14.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240404_224230.jpg: 640x480 1 cat, 1 dining table, 22.0ms\n", + "Speed: 3.0ms preprocess, 22.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240404_224232.jpg: 640x480 2 cats, 37.0ms\n", + "Speed: 5.0ms preprocess, 37.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240404_224233.jpg: 640x480 1 cat, 44.6ms\n", + "Speed: 5.0ms preprocess, 44.6ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240404_224236.jpg: 640x480 1 cat, 46.0ms\n", + "Speed: 4.0ms preprocess, 46.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240404_224237.jpg: 640x480 1 cat, 31.0ms\n", + "Speed: 5.0ms preprocess, 31.0ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240404_224242.jpg: 640x480 1 cat, 35.4ms\n", + "Speed: 7.0ms preprocess, 35.4ms inference, 8.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240405_152307.jpg: 640x480 1 cat, 1 chair, 40.0ms\n", + "Speed: 4.6ms preprocess, 40.0ms inference, 6.8ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240405_152308.jpg: 640x480 1 cat, 1 chair, 51.0ms\n", + "Speed: 4.6ms preprocess, 51.0ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240405_152310.jpg: 640x480 1 cat, 58.5ms\n", + "Speed: 5.0ms preprocess, 58.5ms inference, 8.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240405_152316.jpg: 640x480 1 cat, 57.0ms\n", + "Speed: 6.6ms preprocess, 57.0ms inference, 8.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240405_152338.jpg: 640x480 1 cat, 67.0ms\n", + "Speed: 4.0ms preprocess, 67.0ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240405_152341.jpg: 640x480 1 cat, 1 chair, 31.0ms\n", + "Speed: 4.9ms preprocess, 31.0ms inference, 10.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233450.jpg: 640x480 2 chairs, 1 book, 43.0ms\n", + "Speed: 3.0ms preprocess, 43.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233452.jpg: 640x480 1 chair, 32.0ms\n", + "Speed: 4.0ms preprocess, 32.0ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233500.jpg: 640x480 1 cat, 33.0ms\n", + "Speed: 4.0ms preprocess, 33.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233501.jpg: 640x480 1 cat, 1 bed, 28.0ms\n", + "Speed: 4.0ms preprocess, 28.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233502.jpg: 640x480 1 cat, 32.0ms\n", + "Speed: 5.0ms preprocess, 32.0ms inference, 5.8ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233503.jpg: 640x480 1 bench, 1 cat, 31.0ms\n", + "Speed: 4.0ms preprocess, 31.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233504.jpg: 640x480 1 cat, 37.0ms\n", + "Speed: 4.0ms preprocess, 37.0ms inference, 5.8ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233505.jpg: 640x480 1 cat, 34.0ms\n", + "Speed: 4.0ms preprocess, 34.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233506.jpg: 640x480 1 cat, 45.0ms\n", + "Speed: 6.0ms preprocess, 45.0ms inference, 6.6ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233553.jpg: 480x640 (no detections), 30.0ms\n", + "Speed: 5.1ms preprocess, 30.0ms inference, 1.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233600.jpg: 480x640 1 cat, 22.0ms\n", + "Speed: 3.0ms preprocess, 22.0ms inference, 5.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233601.jpg: 480x640 (no detections), 24.5ms\n", + "Speed: 4.0ms preprocess, 24.5ms inference, 2.5ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233605.jpg: 480x640 (no detections), 23.0ms\n", + "Speed: 4.0ms preprocess, 23.0ms inference, 2.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233736.jpg: 640x480 1 bench, 1 apple, 1 bed, 59.4ms\n", + "Speed: 5.0ms preprocess, 59.4ms inference, 10.9ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233740.jpg: 640x480 1 bench, 27.6ms\n", + "Speed: 4.0ms preprocess, 27.6ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233759.jpg: 640x480 (no detections), 36.2ms\n", + "Speed: 8.0ms preprocess, 36.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233835.jpg: 640x480 1 bench, 34.9ms\n", + "Speed: 6.0ms preprocess, 34.9ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234112.jpg: 640x480 2 cats, 1 potted plant, 32.0ms\n", + "Speed: 4.0ms preprocess, 32.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234115.jpg: 640x480 1 cat, 1 dining table, 30.9ms\n", + "Speed: 5.0ms preprocess, 30.9ms inference, 6.5ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234507.jpg: 640x480 1 bench, 1 cat, 1 chair, 29.4ms\n", + "Speed: 4.0ms preprocess, 29.4ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234510.jpg: 640x480 1 cat, 2 chairs, 33.0ms\n", + "Speed: 4.0ms preprocess, 33.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234512.jpg: 640x480 1 cat, 33.0ms\n", + "Speed: 5.0ms preprocess, 33.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234514.jpg: 640x480 1 cat, 28.0ms\n", + "Speed: 5.0ms preprocess, 28.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234520.jpg: 640x480 2 cats, 1 bed, 1 toilet, 30.0ms\n", + "Speed: 5.0ms preprocess, 30.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234523.jpg: 640x480 1 cat, 45.3ms\n", + "Speed: 6.0ms preprocess, 45.3ms inference, 37.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234524.jpg: 640x480 2 cats, 41.9ms\n", + "Speed: 4.0ms preprocess, 41.9ms inference, 6.7ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234614.jpg: 640x480 1 bird, 41.0ms\n", + "Speed: 6.5ms preprocess, 41.0ms inference, 7.8ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234630.jpg: 640x480 1 cat, 1 dog, 45.0ms\n", + "Speed: 7.0ms preprocess, 45.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234749.jpg: 640x480 1 cat, 10.0ms\n", + "Speed: 3.0ms preprocess, 10.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_235449.jpg: 640x480 1 cat, 11.1ms\n", + "Speed: 3.0ms preprocess, 11.1ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_235454.jpg: 640x480 1 chair, 1 teddy bear, 11.0ms\n", + "Speed: 3.0ms preprocess, 11.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240414_204830.jpg: 640x480 1 cow, 9.0ms\n", + "Speed: 3.0ms preprocess, 9.0ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240414_204832.jpg: 640x480 2 cats, 8.0ms\n", + "Speed: 3.0ms preprocess, 8.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240415_191936.jpg: 640x480 1 cat, 13.1ms\n", + "Speed: 3.0ms preprocess, 13.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240416_131400.jpg: 640x480 1 person, 1 cat, 1 chair, 1 couch, 1 tv, 13.0ms\n", + "Speed: 4.0ms preprocess, 13.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240421_133252.jpg: 640x480 1 dog, 30.0ms\n", + "Speed: 5.0ms preprocess, 30.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240421_133313.jpg: 640x480 1 dog, 1 suitcase, 29.9ms\n", + "Speed: 7.0ms preprocess, 29.9ms inference, 10.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240423_103248.jpg: 480x640 1 cat, 31.0ms\n", + "Speed: 4.0ms preprocess, 31.0ms inference, 5.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240424_204037.jpg: 640x480 2 cats, 1 chair, 16.0ms\n", + "Speed: 3.0ms preprocess, 16.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240425_224816.jpg: 640x480 1 cat, 15.8ms\n", + "Speed: 3.0ms preprocess, 15.8ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240425_224817(0).jpg: 640x480 1 cat, 13.0ms\n", + "Speed: 3.0ms preprocess, 13.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240425_224817.jpg: 640x480 1 cat, 12.0ms\n", + "Speed: 4.0ms preprocess, 12.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240425_224819.jpg: 640x480 1 cat, 21.0ms\n", + "Speed: 7.0ms preprocess, 21.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240426_133718.jpg: 640x480 1 cat, 21.0ms\n", + "Speed: 6.0ms preprocess, 21.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240426_133720.jpg: 640x480 1 cat, 42.5ms\n", + "Speed: 5.0ms preprocess, 42.5ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240427_113516.jpg: 640x480 1 cat, 75.0ms\n", + "Speed: 4.0ms preprocess, 75.0ms inference, 8.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240427_113519.jpg: 640x480 1 cat, 1 chair, 56.5ms\n", + "Speed: 5.0ms preprocess, 56.5ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240427_130031.jpg: 640x480 1 cat, 25.0ms\n", + "Speed: 5.0ms preprocess, 25.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240427_130032.jpg: 640x480 1 cat, 24.0ms\n", + "Speed: 4.0ms preprocess, 24.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240427_130041.jpg: 640x480 1 cat, 98.1ms\n", + "Speed: 8.0ms preprocess, 98.1ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240503_173937.jpg: 640x480 1 cat, 33.0ms\n", + "Speed: 5.0ms preprocess, 33.0ms inference, 5.5ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240503_173948.jpg: 480x640 1 cat, 1 chair, 28.0ms\n", + "Speed: 4.6ms preprocess, 28.0ms inference, 4.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240509_185557.jpg: 640x480 1 bench, 1 cat, 1 backpack, 1 chair, 1 potted plant, 31.0ms\n", + "Speed: 5.0ms preprocess, 31.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240509_185559.jpg: 640x480 1 cat, 1 bear, 1 tv, 25.0ms\n", + "Speed: 6.0ms preprocess, 25.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240509_185601.jpg: 640x480 1 cat, 24.0ms\n", + "Speed: 4.0ms preprocess, 24.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240509_185604.jpg: 640x480 1 cat, 24.7ms\n", + "Speed: 5.0ms preprocess, 24.7ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240509_185606.jpg: 640x480 2 cats, 1 dog, 26.0ms\n", + "Speed: 4.0ms preprocess, 26.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240509_185608.jpg: 640x480 2 cats, 1 potted plant, 25.4ms\n", + "Speed: 5.0ms preprocess, 25.4ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240509_185612.jpg: 640x480 1 cat, 26.0ms\n", + "Speed: 4.8ms preprocess, 26.0ms inference, 5.4ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240511_185650.jpg: 640x480 2 cats, 4 chairs, 39.6ms\n", + "Speed: 4.0ms preprocess, 39.6ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240511_185651.jpg: 640x480 2 cats, 1 cup, 2 chairs, 24.2ms\n", + "Speed: 4.1ms preprocess, 24.2ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240511_185652.jpg: 640x480 2 cats, 1 cup, 2 chairs, 40.2ms\n", + "Speed: 5.0ms preprocess, 40.2ms inference, 6.6ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240511_185656.jpg: 640x480 1 bottle, 2 bowls, 3 chairs, 3 potted plants, 1 dining table, 1 tv, 3 vases, 25.2ms\n", + "Speed: 5.0ms preprocess, 25.2ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240511_194053.jpg: 640x480 1 cat, 1 chair, 36.0ms\n", + "Speed: 4.0ms preprocess, 36.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240511_210228.jpg: 640x480 1 cat, 24.5ms\n", + "Speed: 4.0ms preprocess, 24.5ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_071046.jpg: 640x480 1 cat, 1 dog, 25.1ms\n", + "Speed: 5.0ms preprocess, 25.1ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_071050.jpg: 640x480 1 cat, 2 bottles, 1 refrigerator, 24.0ms\n", + "Speed: 4.0ms preprocess, 24.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_071052.jpg: 640x480 1 cat, 2 bottles, 91.6ms\n", + "Speed: 6.0ms preprocess, 91.6ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_071053.jpg: 640x480 1 cat, 2 bottles, 41.9ms\n", + "Speed: 6.5ms preprocess, 41.9ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_072915.jpg: 640x480 1 cat, 1 couch, 12.0ms\n", + "Speed: 3.0ms preprocess, 12.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_231919.jpg: 640x480 1 cat, 1 mouse, 8.9ms\n", + "Speed: 3.0ms preprocess, 8.9ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_231920.jpg: 640x480 1 cat, 8.0ms\n", + "Speed: 3.0ms preprocess, 8.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_235311.jpg: 640x480 1 cat, 1 bowl, 12.1ms\n", + "Speed: 3.0ms preprocess, 12.1ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_235315.jpg: 640x480 1 cat, 10.4ms\n", + "Speed: 3.6ms preprocess, 10.4ms inference, 4.5ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_235317.jpg: 640x480 1 cat, 1 bowl, 12.0ms\n", + "Speed: 3.0ms preprocess, 12.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_090846.jpg: 640x480 1 cat, 19.0ms\n", + "Speed: 4.5ms preprocess, 19.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_090900.jpg: 640x480 1 cat, 19.9ms\n", + "Speed: 5.0ms preprocess, 19.9ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_090907.jpg: 640x480 1 cat, 20.0ms\n", + "Speed: 4.0ms preprocess, 20.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_090911.jpg: 640x480 1 cat, 32.0ms\n", + "Speed: 5.0ms preprocess, 32.0ms inference, 5.9ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_090915.jpg: 640x480 1 person, 1 dog, 34.8ms\n", + "Speed: 5.0ms preprocess, 34.8ms inference, 11.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180307.jpg: 640x480 2 cats, 25.4ms\n", + "Speed: 5.0ms preprocess, 25.4ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180310.jpg: 640x480 2 cats, 1 handbag, 1 suitcase, 27.1ms\n", + "Speed: 4.0ms preprocess, 27.1ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180316.jpg: 640x480 1 cat, 1 couch, 25.0ms\n", + "Speed: 3.0ms preprocess, 25.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180318.jpg: 640x480 1 cat, 1 book, 24.2ms\n", + "Speed: 4.0ms preprocess, 24.2ms inference, 5.8ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180331.jpg: 640x480 1 cat, 25.0ms\n", + "Speed: 3.0ms preprocess, 25.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180334.jpg: 640x480 1 cat, 26.0ms\n", + "Speed: 4.0ms preprocess, 26.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180528.jpg: 640x480 1 dog, 214.6ms\n", + "Speed: 6.0ms preprocess, 214.6ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180532.jpg: 640x480 1 cat, 16.7ms\n", + "Speed: 4.0ms preprocess, 16.7ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180534.jpg: 640x480 (no detections), 11.7ms\n", + "Speed: 3.0ms preprocess, 11.7ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180536.jpg: 640x480 (no detections), 12.0ms\n", + "Speed: 3.0ms preprocess, 12.0ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180542.jpg: 640x480 1 person, 18.0ms\n", + "Speed: 3.0ms preprocess, 18.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180847.jpg: 640x480 1 cat, 33.8ms\n", + "Speed: 4.0ms preprocess, 33.8ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180849.jpg: 640x480 2 cats, 1 suitcase, 42.0ms\n", + "Speed: 4.0ms preprocess, 42.0ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180853.jpg: 640x480 1 cat, 1 couch, 118.4ms\n", + "Speed: 5.0ms preprocess, 118.4ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180937.jpg: 640x480 1 cat, 12.0ms\n", + "Speed: 2.0ms preprocess, 12.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180939.jpg: 640x480 1 cat, 10.0ms\n", + "Speed: 4.0ms preprocess, 10.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240514_193135.jpg: 640x480 1 person, 3 cats, 1 dog, 2 chairs, 9.1ms\n", + "Speed: 4.0ms preprocess, 9.1ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240514_193136.jpg: 640x480 1 person, 4 cats, 12.0ms\n", + "Speed: 4.0ms preprocess, 12.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240514_213919(0).jpg: 640x480 1 cat, 1 chair, 18.0ms\n", + "Speed: 4.0ms preprocess, 18.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240514_213919.jpg: 640x480 1 cat, 1 chair, 1 couch, 1 bed, 26.0ms\n", + "Speed: 4.9ms preprocess, 26.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240514_223849.jpg: 640x480 1 cat, 1 chair, 1 bed, 29.0ms\n", + "Speed: 3.0ms preprocess, 29.0ms inference, 9.5ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240514_223851.jpg: 640x480 1 cat, 1 cup, 2 chairs, 1 tv, 1 book, 88.0ms\n", + "Speed: 4.0ms preprocess, 88.0ms inference, 15.5ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240603_225020(0).jpg: 640x480 1 cat, 1 dog, 15.0ms\n", + "Speed: 3.0ms preprocess, 15.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240603_225020.jpg: 640x480 1 cat, 11.0ms\n", + "Speed: 3.0ms preprocess, 11.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240603_225023.jpg: 640x480 1 dog, 13.1ms\n", + "Speed: 3.0ms preprocess, 13.1ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240603_225026.jpg: 640x480 1 dog, 11.0ms\n", + "Speed: 2.0ms preprocess, 11.0ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240603_225027.jpg: 640x480 1 dog, 15.0ms\n", + "Speed: 4.0ms preprocess, 15.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192457.jpg: 640x480 1 cat, 1 couch, 16.0ms\n", + "Speed: 4.1ms preprocess, 16.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192458(0).jpg: 640x480 1 cat, 1 couch, 43.0ms\n", + "Speed: 6.0ms preprocess, 43.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192458.jpg: 640x480 1 cat, 1 couch, 89.2ms\n", + "Speed: 10.0ms preprocess, 89.2ms inference, 8.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192459(0).jpg: 640x480 1 cat, 1 couch, 20.1ms\n", + "Speed: 3.0ms preprocess, 20.1ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192459.jpg: 640x480 1 cat, 1 couch, 56.0ms\n", + "Speed: 8.0ms preprocess, 56.0ms inference, 11.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192501(0).jpg: 640x480 1 cat, 1 couch, 78.0ms\n", + "Speed: 6.0ms preprocess, 78.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192501.jpg: 640x480 1 cat, 9.0ms\n", + "Speed: 3.0ms preprocess, 9.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192502(0).jpg: 640x480 1 cat, 1 couch, 13.0ms\n", + "Speed: 3.0ms preprocess, 13.0ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192502.jpg: 640x480 1 cat, 1 couch, 13.0ms\n", + "Speed: 4.0ms preprocess, 13.0ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192503.jpg: 640x480 1 cat, 1 dog, 1 couch, 11.0ms\n", + "Speed: 4.0ms preprocess, 11.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192504.jpg: 640x480 1 cat, 1 bed, 13.0ms\n", + "Speed: 4.0ms preprocess, 13.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192505.jpg: 640x480 1 cat, 1 bed, 16.0ms\n", + "Speed: 4.0ms preprocess, 16.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192506.jpg: 640x480 1 cat, 1 couch, 1 bed, 42.0ms\n", + "Speed: 4.0ms preprocess, 42.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192508.jpg: 640x480 1 cat, 121.6ms\n", + "Speed: 5.7ms preprocess, 121.6ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192509.jpg: 640x480 1 cat, 1 bed, 36.3ms\n", + "Speed: 4.2ms preprocess, 36.3ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192510.jpg: 640x480 1 dog, 1 bed, 49.0ms\n", + "Speed: 6.0ms preprocess, 49.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192511.jpg: 640x480 1 dog, 2 beds, 27.0ms\n", + "Speed: 44.0ms preprocess, 27.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192512(0).jpg: 640x480 1 cat, 1 dog, 1 bed, 26.0ms\n", + "Speed: 4.0ms preprocess, 26.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192512.jpg: 640x480 1 dog, 1 bed, 25.0ms\n", + "Speed: 5.0ms preprocess, 25.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192513.jpg: 640x480 1 cat, 1 remote, 24.8ms\n", + "Speed: 5.0ms preprocess, 24.8ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192514.jpg: 640x480 1 cat, 1 bed, 25.0ms\n", + "Speed: 4.0ms preprocess, 25.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192515(0).jpg: 640x480 1 cat, 26.0ms\n", + "Speed: 4.0ms preprocess, 26.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192515.jpg: 640x480 1 cat, 25.0ms\n", + "Speed: 4.0ms preprocess, 25.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192533.jpg: 640x480 1 cat, 1 bed, 144.5ms\n", + "Speed: 5.0ms preprocess, 144.5ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192534(0).jpg: 640x480 1 cat, 53.3ms\n", + "Speed: 5.0ms preprocess, 53.3ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192534.jpg: 640x480 1 cat, 65.0ms\n", + "Speed: 4.5ms preprocess, 65.0ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192535.jpg: 640x480 1 cat, 70.8ms\n", + "Speed: 4.0ms preprocess, 70.8ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192537.jpg: 640x480 1 cat, 1 bed, 25.0ms\n", + "Speed: 4.0ms preprocess, 25.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192538(0).jpg: 640x480 1 cat, 28.0ms\n", + "Speed: 4.0ms preprocess, 28.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192538.jpg: 640x480 1 cat, 1 couch, 1 bed, 38.0ms\n", + "Speed: 5.6ms preprocess, 38.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192539(0).jpg: 640x480 1 cat, 32.0ms\n", + "Speed: 3.5ms preprocess, 32.0ms inference, 8.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192539.jpg: 640x480 1 cat, 92.7ms\n", + "Speed: 3.0ms preprocess, 92.7ms inference, 8.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192542.jpg: 640x480 1 cat, 27.0ms\n", + "Speed: 4.0ms preprocess, 27.0ms inference, 9.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192544.jpg: 640x480 1 cat, 1 couch, 1 bed, 23.0ms\n", + "Speed: 6.1ms preprocess, 23.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240618_205057.jpg: 640x480 1 cat, 1 book, 41.0ms\n", + "Speed: 4.0ms preprocess, 41.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240618_205103.jpg: 640x480 1 cat, 34.6ms\n", + "Speed: 3.0ms preprocess, 34.6ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240618_205105.jpg: 640x480 1 cat, 46.8ms\n", + "Speed: 5.0ms preprocess, 46.8ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240618_205110.jpg: 640x480 1 cat, 40.0ms\n", + "Speed: 6.0ms preprocess, 40.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240618_205113.jpg: 640x480 1 cat, 51.0ms\n", + "Speed: 4.0ms preprocess, 51.0ms inference, 7.7ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240618_205119.jpg: 480x640 1 cat, 27.6ms\n", + "Speed: 5.0ms preprocess, 27.6ms inference, 4.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240618_205121.jpg: 480x640 1 cat, 29.0ms\n", + "Speed: 4.0ms preprocess, 29.0ms inference, 5.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240623_192721.jpg: 640x480 2 cats, 1 dog, 35.8ms\n", + "Speed: 6.0ms preprocess, 35.8ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240624_200545.jpg: 640x480 1 cat, 1 bottle, 1 potted plant, 46.0ms\n", + "Speed: 4.0ms preprocess, 46.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240624_200548.jpg: 640x480 1 cat, 115.1ms\n", + "Speed: 4.0ms preprocess, 115.1ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240624_200549.jpg: 640x480 1 cat, 9.0ms\n", + "Speed: 2.0ms preprocess, 9.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_012349.jpg: 640x480 1 cat, 10.0ms\n", + "Speed: 2.0ms preprocess, 10.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_012352.jpg: 640x480 1 cat, 12.0ms\n", + "Speed: 2.0ms preprocess, 12.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_012400.jpg: 640x480 1 cat, 21.3ms\n", + "Speed: 3.0ms preprocess, 21.3ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_012402.jpg: 640x480 1 cat, 11.0ms\n", + "Speed: 3.0ms preprocess, 11.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_012407.jpg: 640x480 1 cat, 15.0ms\n", + "Speed: 5.0ms preprocess, 15.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_012408.jpg: 640x480 1 cat, 35.0ms\n", + "Speed: 5.0ms preprocess, 35.0ms inference, 8.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_231410.jpg: 640x480 1 cat, 23.8ms\n", + "Speed: 4.0ms preprocess, 23.8ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_231412.jpg: 640x480 1 cat, 25.0ms\n", + "Speed: 6.0ms preprocess, 25.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_231413.jpg: 640x480 1 cat, 1 tv, 159.3ms\n", + "Speed: 5.0ms preprocess, 159.3ms inference, 10.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240704_202652.jpg: 640x480 1 cat, 1 dog, 8.0ms\n", + "Speed: 4.0ms preprocess, 8.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240711_221427.jpg: 640x480 1 cat, 19.0ms\n", + "Speed: 3.0ms preprocess, 19.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240711_221435.jpg: 640x480 3 cats, 18.1ms\n", + "Speed: 3.0ms preprocess, 18.1ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165019.jpg: 640x480 1 cat, 2 potted plants, 1 bed, 1 vase, 35.0ms\n", + "Speed: 4.0ms preprocess, 35.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165021.jpg: 640x480 2 cats, 1 couch, 5 potted plants, 1 bed, 1 tv, 1 vase, 22.0ms\n", + "Speed: 3.7ms preprocess, 22.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165025.jpg: 640x480 1 cat, 7 potted plants, 2 beds, 1 vase, 25.0ms\n", + "Speed: 3.5ms preprocess, 25.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165028.jpg: 640x480 1 cat, 1 bottle, 2 cups, 1 chair, 3 potted plants, 1 bed, 1 vase, 25.0ms\n", + "Speed: 4.0ms preprocess, 25.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165029.jpg: 640x480 1 cat, 3 potted plants, 1 bed, 3 vases, 26.0ms\n", + "Speed: 4.0ms preprocess, 26.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165031.jpg: 640x480 1 cat, 6 potted plants, 1 bed, 3 vases, 26.0ms\n", + "Speed: 4.0ms preprocess, 26.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165033.jpg: 640x480 2 cats, 1 cup, 1 chair, 2 potted plants, 1 tv, 1 keyboard, 25.0ms\n", + "Speed: 4.0ms preprocess, 25.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165040.jpg: 640x480 1 cat, 1 chair, 2 potted plants, 1 bed, 1 vase, 26.3ms\n", + "Speed: 5.0ms preprocess, 26.3ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_224858.jpg: 640x480 1 cat, 1 bed, 24.0ms\n", + "Speed: 4.0ms preprocess, 24.0ms inference, 5.5ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_224902.jpg: 640x480 1 cat, 1 bed, 25.6ms\n", + "Speed: 4.0ms preprocess, 25.6ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_224903.jpg: 640x480 1 cat, 25.0ms\n", + "Speed: 4.0ms preprocess, 25.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_224905.jpg: 640x480 1 cat, 25.0ms\n", + "Speed: 5.0ms preprocess, 25.0ms inference, 6.5ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240725_133737.jpg: 640x480 1 person, 1 cup, 77.5ms\n", + "Speed: 4.0ms preprocess, 77.5ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240726_225449.jpg: 640x480 1 bench, 2 cats, 8.0ms\n", + "Speed: 3.0ms preprocess, 8.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240727_085826.jpg: 640x480 1 person, 1 cat, 14.0ms\n", + "Speed: 3.0ms preprocess, 14.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240802_203206.jpg: 640x480 1 cat, 9.0ms\n", + "Speed: 3.0ms preprocess, 9.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102342.jpg: 480x640 2 persons, 1 cat, 11.0ms\n", + "Speed: 3.0ms preprocess, 11.0ms inference, 2.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102347.jpg: 480x640 1 person, 2 cats, 10.3ms\n", + "Speed: 3.0ms preprocess, 10.3ms inference, 2.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102351.jpg: 480x640 2 persons, 2 cats, 9.0ms\n", + "Speed: 4.0ms preprocess, 9.0ms inference, 1.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102354.jpg: 480x640 2 persons, 1 cat, 1 suitcase, 17.0ms\n", + "Speed: 5.0ms preprocess, 17.0ms inference, 4.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102402.jpg: 480x640 1 cat, 1 umbrella, 11.0ms\n", + "Speed: 4.6ms preprocess, 11.0ms inference, 3.4ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102407.jpg: 480x640 2 persons, 1 cat, 16.0ms\n", + "Speed: 4.0ms preprocess, 16.0ms inference, 5.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102411.jpg: 480x640 1 person, 1 cat, 20.1ms\n", + "Speed: 4.0ms preprocess, 20.1ms inference, 4.5ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102415.jpg: 480x640 1 person, 1 cat, 18.1ms\n", + "Speed: 4.0ms preprocess, 18.1ms inference, 3.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_113806.jpg: 640x480 1 person, 1 cat, 2 suitcases, 27.0ms\n", + "Speed: 4.0ms preprocess, 27.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_145117.jpg: 640x480 1 cat, 26.0ms\n", + "Speed: 4.0ms preprocess, 26.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_145118.jpg: 640x480 1 cat, 41.0ms\n", + "Speed: 9.1ms preprocess, 41.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_171056.jpg: 640x480 1 cat, 1 chair, 3 books, 49.9ms\n", + "Speed: 6.0ms preprocess, 49.9ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_171058.jpg: 640x480 1 cat, 1 chair, 2 books, 25.0ms\n", + "Speed: 3.0ms preprocess, 25.0ms inference, 5.3ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_171100.jpg: 640x480 1 dog, 3 books, 111.5ms\n", + "Speed: 3.0ms preprocess, 111.5ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_171104.jpg: 640x480 1 cat, 1 suitcase, 1 chair, 4 books, 25.0ms\n", + "Speed: 4.0ms preprocess, 25.0ms inference, 5.5ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_171110.jpg: 640x480 1 cat, 1 suitcase, 6 books, 24.0ms\n", + "Speed: 5.0ms preprocess, 24.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_171111.jpg: 640x480 1 cat, 1 chair, 3 books, 79.0ms\n", + "Speed: 7.0ms preprocess, 79.0ms inference, 8.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_203211.jpg: 640x480 2 cats, 24.0ms\n", + "Speed: 4.0ms preprocess, 24.0ms inference, 5.6ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_203213.jpg: 640x480 2 cats, 1 dog, 25.5ms\n", + "Speed: 4.0ms preprocess, 25.5ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_203217.jpg: 640x480 2 cats, 24.8ms\n", + "Speed: 5.0ms preprocess, 24.8ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_203219.jpg: 640x480 2 cats, 25.0ms\n", + "Speed: 4.0ms preprocess, 25.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_164652.jpg: 640x480 1 cat, 1 cake, 25.0ms\n", + "Speed: 4.0ms preprocess, 25.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_164655.jpg: 640x480 2 cats, 24.3ms\n", + "Speed: 5.0ms preprocess, 24.3ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_171436.jpg: 640x480 1 cat, 1 cup, 2 bowls, 1 book, 101.6ms\n", + "Speed: 9.5ms preprocess, 101.6ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_171438.jpg: 640x480 1 cat, 2 bowls, 9.8ms\n", + "Speed: 3.0ms preprocess, 9.8ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_171443.jpg: 640x480 1 cat, 2 bowls, 16.5ms\n", + "Speed: 4.5ms preprocess, 16.5ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_173348.jpg: 640x480 1 cat, 10.0ms\n", + "Speed: 2.0ms preprocess, 10.0ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_173355.jpg: 640x480 1 cat, 8.0ms\n", + "Speed: 3.0ms preprocess, 8.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_173426.jpg: 480x640 1 cat, 13.0ms\n", + "Speed: 3.0ms preprocess, 13.0ms inference, 1.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211309.jpg: 640x480 2 cats, 43.0ms\n", + "Speed: 5.0ms preprocess, 43.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211312.jpg: 640x480 1 cat, 62.0ms\n", + "Speed: 4.0ms preprocess, 62.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211313.jpg: 640x480 1 cat, 23.0ms\n", + "Speed: 4.0ms preprocess, 23.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211320.jpg: 640x480 1 cat, 59.0ms\n", + "Speed: 5.0ms preprocess, 59.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211321.jpg: 640x480 1 cat, 37.5ms\n", + "Speed: 5.0ms preprocess, 37.5ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211322.jpg: 640x480 1 cat, 11.0ms\n", + "Speed: 3.0ms preprocess, 11.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211330.jpg: 640x480 2 cats, 3 chairs, 9.2ms\n", + "Speed: 2.0ms preprocess, 9.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211333.jpg: 640x480 1 cat, 1 chair, 10.0ms\n", + "Speed: 3.0ms preprocess, 10.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240820_144924.jpg: 640x480 1 bench, 1 cat, 10.5ms\n", + "Speed: 2.0ms preprocess, 10.5ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240820_145200.jpg: 640x480 1 bench, 1 cat, 11.0ms\n", + "Speed: 3.0ms preprocess, 11.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_144759.jpg: 640x480 1 cat, 2 chairs, 1 book, 11.0ms\n", + "Speed: 3.0ms preprocess, 11.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_144801.jpg: 640x480 1 cat, 1 book, 15.0ms\n", + "Speed: 4.0ms preprocess, 15.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_144802.jpg: 640x480 (no detections), 24.0ms\n", + "Speed: 4.0ms preprocess, 24.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_144806.jpg: 640x480 1 cat, 1 dog, 1 tie, 25.0ms\n", + "Speed: 4.0ms preprocess, 25.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_144808.jpg: 640x480 1 cat, 1 dog, 24.9ms\n", + "Speed: 4.0ms preprocess, 24.9ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_144856.jpg: 640x480 1 person, 25.5ms\n", + "Speed: 4.5ms preprocess, 25.5ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_144935.jpg: 640x480 2 cats, 1 dog, 1 chair, 24.0ms\n", + "Speed: 5.0ms preprocess, 24.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145212.jpg: 640x480 2 persons, 3 dogs, 26.0ms\n", + "Speed: 4.0ms preprocess, 26.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145214.jpg: 640x480 2 persons, 2 cats, 1 chair, 26.1ms\n", + "Speed: 4.0ms preprocess, 26.1ms inference, 3.9ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145834.jpg: 640x480 2 cats, 1 dog, 25.0ms\n", + "Speed: 4.0ms preprocess, 25.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145836.jpg: 640x480 2 cats, 1 chair, 26.0ms\n", + "Speed: 4.0ms preprocess, 26.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145837.jpg: 640x480 2 cats, 1 dog, 71.4ms\n", + "Speed: 4.0ms preprocess, 71.4ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145839.jpg: 640x480 2 cats, 1 dog, 23.0ms\n", + "Speed: 4.0ms preprocess, 23.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145844.jpg: 640x480 2 cats, 1 dog, 56.2ms\n", + "Speed: 7.0ms preprocess, 56.2ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145846.jpg: 640x480 1 person, 1 cat, 1 dog, 1 suitcase, 13.7ms\n", + "Speed: 3.0ms preprocess, 13.7ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145849.jpg: 640x480 2 cats, 1 chair, 8.0ms\n", + "Speed: 3.0ms preprocess, 8.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_150802.jpg: 640x480 1 teddy bear, 8.0ms\n", + "Speed: 2.0ms preprocess, 8.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_150805.jpg: 640x480 1 teddy bear, 11.0ms\n", + "Speed: 3.0ms preprocess, 11.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_150807.jpg: 480x640 1 cat, 9.0ms\n", + "Speed: 4.1ms preprocess, 9.0ms inference, 2.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_150810.jpg: 480x640 1 person, 2 cats, 9.0ms\n", + "Speed: 3.0ms preprocess, 9.0ms inference, 2.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_150813.jpg: 480x640 1 person, 1 cat, 1 couch, 21.0ms\n", + "Speed: 3.0ms preprocess, 21.0ms inference, 5.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_150852.jpg: 640x480 1 cat, 23.6ms\n", + "Speed: 4.0ms preprocess, 23.6ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_152201.jpg: 640x480 2 cats, 1 dog, 25.0ms\n", + "Speed: 5.0ms preprocess, 25.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_152205.jpg: 640x480 2 cats, 28.0ms\n", + "Speed: 4.0ms preprocess, 28.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_152211.jpg: 640x480 2 cats, 25.0ms\n", + "Speed: 5.0ms preprocess, 25.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_152212.jpg: 640x480 1 cat, 1 dog, 26.0ms\n", + "Speed: 4.0ms preprocess, 26.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240827_224300.jpg: 640x480 1 cat, 1 couch, 129.6ms\n", + "Speed: 6.0ms preprocess, 129.6ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240827_224303.jpg: 640x480 1 cat, 66.0ms\n", + "Speed: 5.0ms preprocess, 66.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240828_102222.jpg: 640x480 1 cat, 1 chair, 10.0ms\n", + "Speed: 3.0ms preprocess, 10.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240828_102229.jpg: 640x480 1 cat, 7.0ms\n", + "Speed: 2.0ms preprocess, 7.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240903_211802.jpg: 640x480 1 cat, 9.0ms\n", + "Speed: 2.5ms preprocess, 9.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240903_211803.jpg: 640x480 1 cat, 10.0ms\n", + "Speed: 3.0ms preprocess, 10.0ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240903_211811.jpg: 640x480 1 cat, 11.0ms\n", + "Speed: 3.0ms preprocess, 11.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240903_211818.jpg: 640x480 1 cat, 1 dog, 1 couch, 1 bed, 12.0ms\n", + "Speed: 3.0ms preprocess, 12.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240903_211821.jpg: 640x480 1 person, 1 cat, 1 frisbee, 1 chair, 1 bed, 90.7ms\n", + "Speed: 12.0ms preprocess, 90.7ms inference, 9.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240907_115059.jpg: 480x640 1 cat, 1 couch, 1 bed, 20.2ms\n", + "Speed: 4.0ms preprocess, 20.2ms inference, 3.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240907_115105.jpg: 480x640 1 cat, 2 beds, 19.0ms\n", + "Speed: 5.0ms preprocess, 19.0ms inference, 5.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240907_115118.jpg: 480x640 1 cat, 1 bed, 20.0ms\n", + "Speed: 4.0ms preprocess, 20.0ms inference, 4.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240908_190713.jpg: 640x480 1 cat, 2 beds, 28.0ms\n", + "Speed: 4.0ms preprocess, 28.0ms inference, 9.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240908_190829.jpg: 640x480 1 cat, 1 bed, 159.9ms\n", + "Speed: 4.0ms preprocess, 159.9ms inference, 10.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240908_194734.jpg: 640x480 (no detections), 26.0ms\n", + "Speed: 4.0ms preprocess, 26.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240908_194737.jpg: 640x480 2 cats, 70.8ms\n", + "Speed: 4.0ms preprocess, 70.8ms inference, 3.5ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240908_194739.jpg: 640x480 2 cats, 8.0ms\n", + "Speed: 2.0ms preprocess, 8.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240908_194752.jpg: 640x480 1 cat, 1 bed, 10.0ms\n", + "Speed: 3.0ms preprocess, 10.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240908_194753.jpg: 640x480 1 handbag, 1 bed, 14.0ms\n", + "Speed: 3.0ms preprocess, 14.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240909_000642.jpg: 480x640 1 cat, 1 chair, 1 bed, 14.0ms\n", + "Speed: 4.0ms preprocess, 14.0ms inference, 3.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240909_000646.jpg: 480x640 2 cats, 12.0ms\n", + "Speed: 3.0ms preprocess, 12.0ms inference, 2.5ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124611.jpg: 640x480 1 cat, 1 bed, 27.3ms\n", + "Speed: 4.0ms preprocess, 27.3ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124612.jpg: 640x480 1 cat, 1 dog, 1 bed, 12.0ms\n", + "Speed: 3.0ms preprocess, 12.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124619.jpg: 640x480 1 person, 1 bed, 1 teddy bear, 62.9ms\n", + "Speed: 5.0ms preprocess, 62.9ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124621.jpg: 640x480 1 person, 1 bed, 1 teddy bear, 41.0ms\n", + "Speed: 4.0ms preprocess, 41.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124624.jpg: 640x480 1 dog, 24.0ms\n", + "Speed: 4.0ms preprocess, 24.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124720.jpg: 640x480 1 bench, 1 cat, 1 bed, 26.0ms\n", + "Speed: 4.0ms preprocess, 26.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124723.jpg: 640x480 1 cat, 74.1ms\n", + "Speed: 5.0ms preprocess, 74.1ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124734.jpg: 640x480 1 cat, 2 beds, 25.0ms\n", + "Speed: 5.0ms preprocess, 25.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124738.jpg: 640x480 1 cat, 1 bed, 25.0ms\n", + "Speed: 4.6ms preprocess, 25.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124741.jpg: 640x480 1 cat, 1 couch, 1 bed, 26.7ms\n", + "Speed: 4.0ms preprocess, 26.7ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091314.jpg: 640x480 1 cat, 39.0ms\n", + "Speed: 5.0ms preprocess, 39.0ms inference, 8.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091319.jpg: 640x480 1 cat, 39.0ms\n", + "Speed: 5.0ms preprocess, 39.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091320.jpg: 640x480 1 cat, 25.2ms\n", + "Speed: 3.0ms preprocess, 25.2ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091321.jpg: 640x480 (no detections), 24.5ms\n", + "Speed: 4.9ms preprocess, 24.5ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091322.jpg: 640x480 1 cat, 25.0ms\n", + "Speed: 4.0ms preprocess, 25.0ms inference, 5.3ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091323.jpg: 640x480 1 cat, 142.5ms\n", + "Speed: 6.0ms preprocess, 142.5ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091329.jpg: 480x640 1 cat, 21.0ms\n", + "Speed: 4.7ms preprocess, 21.0ms inference, 2.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091845.jpg: 640x480 1 cat, 27.0ms\n", + "Speed: 5.0ms preprocess, 27.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091846.jpg: 640x480 1 cat, 25.0ms\n", + "Speed: 4.0ms preprocess, 25.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091848.jpg: 640x480 1 bird, 1 cat, 26.0ms\n", + "Speed: 4.0ms preprocess, 26.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091850.jpg: 640x480 1 cat, 25.0ms\n", + "Speed: 4.0ms preprocess, 25.0ms inference, 3.7ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091852.jpg: 640x480 1 bird, 1 cat, 26.0ms\n", + "Speed: 4.0ms preprocess, 26.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091859.jpg: 640x480 1 cat, 25.1ms\n", + "Speed: 4.0ms preprocess, 25.1ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091902.jpg: 640x480 1 cat, 25.0ms\n", + "Speed: 4.0ms preprocess, 25.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091905.jpg: 640x480 1 cat, 25.6ms\n", + "Speed: 4.1ms preprocess, 25.6ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_193740.jpg: 640x480 1 cat, 25.0ms\n", + "Speed: 4.0ms preprocess, 25.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_193742.jpg: 640x480 1 cat, 24.6ms\n", + "Speed: 4.0ms preprocess, 24.6ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_174138.jpg: 640x480 1 chair, 1 bed, 1 mouse, 25.0ms\n", + "Speed: 4.0ms preprocess, 25.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_174140.jpg: 640x480 2 surfboards, 40.5ms\n", + "Speed: 3.0ms preprocess, 40.5ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_174204.jpg: 640x480 1 cat, 1 toilet, 98.7ms\n", + "Speed: 5.0ms preprocess, 98.7ms inference, 10.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_174614.jpg: 640x480 2 cats, 1 laptop, 76.9ms\n", + "Speed: 4.0ms preprocess, 76.9ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_174616.jpg: 640x480 1 cat, 20.4ms\n", + "Speed: 4.0ms preprocess, 20.4ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_174617.jpg: 640x480 1 person, 26.0ms\n", + "Speed: 3.0ms preprocess, 26.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_174620.jpg: 640x480 1 person, 146.7ms\n", + "Speed: 5.0ms preprocess, 146.7ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_174622.jpg: 640x480 1 person, 11.0ms\n", + "Speed: 3.0ms preprocess, 11.0ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_174636.jpg: 640x480 1 person, 1 cat, 12.0ms\n", + "Speed: 3.0ms preprocess, 12.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_215106.jpg: 640x480 1 cat, 1 bed, 11.0ms\n", + "Speed: 3.0ms preprocess, 11.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_215113.jpg: 640x480 1 person, 1 cat, 1 bottle, 1 chair, 1 bed, 1 tv, 11.0ms\n", + "Speed: 2.0ms preprocess, 11.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_215119.jpg: 640x480 1 cat, 1 bottle, 1 bed, 1 tv, 15.0ms\n", + "Speed: 3.0ms preprocess, 15.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240920_192026.jpg: 640x480 1 cat, 16.0ms\n", + "Speed: 3.0ms preprocess, 16.0ms inference, 5.7ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240924_111824.jpg: 480x640 1 cat, 20.0ms\n", + "Speed: 4.0ms preprocess, 20.0ms inference, 5.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240924_111829.jpg: 480x640 1 cat, 22.5ms\n", + "Speed: 3.0ms preprocess, 22.5ms inference, 4.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240924_111831.jpg: 480x640 1 cat, 1 chair, 32.4ms\n", + "Speed: 4.0ms preprocess, 32.4ms inference, 5.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162434.jpg: 640x480 2 cats, 1 potted plant, 34.0ms\n", + "Speed: 7.0ms preprocess, 34.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162437.jpg: 640x480 1 cat, 1 potted plant, 47.5ms\n", + "Speed: 5.0ms preprocess, 47.5ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162442.jpg: 640x480 1 person, 1 cat, 34.0ms\n", + "Speed: 5.0ms preprocess, 34.0ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162443.jpg: 640x480 1 person, 1 cat, 25.0ms\n", + "Speed: 5.0ms preprocess, 25.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162445.jpg: 640x480 1 person, 1 cat, 256.1ms\n", + "Speed: 4.0ms preprocess, 256.1ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162452.jpg: 640x480 1 person, 1 cat, 13.0ms\n", + "Speed: 4.0ms preprocess, 13.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162458.jpg: 640x480 1 cat, 2 chairs, 2 potted plants, 16.7ms\n", + "Speed: 4.0ms preprocess, 16.7ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162500.jpg: 640x480 1 cat, 13.5ms\n", + "Speed: 3.0ms preprocess, 13.5ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162503.jpg: 640x480 1 cat, 1 chair, 2 potted plants, 22.0ms\n", + "Speed: 6.0ms preprocess, 22.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240929_100748.jpg: 480x640 2 persons, 1 cat, 19.0ms\n", + "Speed: 4.0ms preprocess, 19.0ms inference, 4.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240929_101009.jpg: 640x480 1 cat, 33.0ms\n", + "Speed: 4.0ms preprocess, 33.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240929_101010.jpg: 640x480 1 dog, 38.0ms\n", + "Speed: 4.0ms preprocess, 38.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240929_101012.jpg: 640x480 1 umbrella, 44.5ms\n", + "Speed: 4.0ms preprocess, 44.5ms inference, 8.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240929_101014.jpg: 640x480 1 cat, 59.4ms\n", + "Speed: 4.0ms preprocess, 59.4ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240929_101016.jpg: 640x480 1 cat, 32.0ms\n", + "Speed: 4.0ms preprocess, 32.0ms inference, 44.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240929_184523.jpg: 480x640 1 cat, 25.0ms\n", + "Speed: 5.0ms preprocess, 25.0ms inference, 4.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240930_151252.jpg: 640x480 3 persons, 1 dog, 1 teddy bear, 37.7ms\n", + "Speed: 4.0ms preprocess, 37.7ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240930_151259.jpg: 640x480 1 cat, 43.7ms\n", + "Speed: 4.0ms preprocess, 43.7ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241002_212916.jpg: 640x480 2 cats, 58.8ms\n", + "Speed: 5.0ms preprocess, 58.8ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241002_212925.jpg: 640x480 2 cats, 1 handbag, 54.4ms\n", + "Speed: 4.0ms preprocess, 54.4ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241002_212949.jpg: 640x480 2 cats, 47.6ms\n", + "Speed: 4.0ms preprocess, 47.6ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241004_112619.jpg: 640x480 1 cat, 1 bowl, 1 potted plant, 54.0ms\n", + "Speed: 4.0ms preprocess, 54.0ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241004_112626.jpg: 640x480 1 cat, 1 bowl, 38.8ms\n", + "Speed: 6.6ms preprocess, 38.8ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241008_094705.jpg: 640x480 1 cat, 1 bowl, 39.0ms\n", + "Speed: 4.5ms preprocess, 39.0ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241008_094939.jpg: 640x480 1 cat, 1 dog, 1 couch, 49.5ms\n", + "Speed: 4.0ms preprocess, 49.5ms inference, 6.8ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241008_094940.jpg: 640x480 2 cats, 32.0ms\n", + "Speed: 4.0ms preprocess, 32.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241009_121555.jpg: 640x480 2 beds, 67.6ms\n", + "Speed: 8.7ms preprocess, 67.6ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241009_121558.jpg: 640x480 1 cat, 1 suitcase, 67.9ms\n", + "Speed: 4.0ms preprocess, 67.9ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241009_121601.jpg: 640x480 2 persons, 34.0ms\n", + "Speed: 4.0ms preprocess, 34.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241013_191519.jpg: 640x480 1 cat, 94.8ms\n", + "Speed: 5.0ms preprocess, 94.8ms inference, 8.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241013_191520.jpg: 640x480 1 cat, 65.0ms\n", + "Speed: 5.0ms preprocess, 65.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241013_191523.jpg: 640x480 1 cat, 66.0ms\n", + "Speed: 5.0ms preprocess, 66.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241013_191525.jpg: 640x480 1 cat, 101.4ms\n", + "Speed: 4.0ms preprocess, 101.4ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241013_191527.jpg: 640x480 1 cat, 1 sink, 19.0ms\n", + "Speed: 4.0ms preprocess, 19.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241013_191529.jpg: 640x480 1 cat, 28.6ms\n", + "Speed: 7.0ms preprocess, 28.6ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241017_132210.jpg: 640x480 1 cat, 13.0ms\n", + "Speed: 4.0ms preprocess, 13.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241017_132216.jpg: 640x480 1 cat, 20.0ms\n", + "Speed: 3.0ms preprocess, 20.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241017_132218.jpg: 640x480 1 dog, 18.5ms\n", + "Speed: 5.0ms preprocess, 18.5ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241017_184948.jpg: 640x480 1 cat, 23.0ms\n", + "Speed: 4.0ms preprocess, 23.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241017_184949.jpg: 640x480 1 cat, 1 bowl, 70.8ms\n", + "Speed: 6.0ms preprocess, 70.8ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241022_023307.jpg: 640x480 1 cat, 1 bottle, 65.0ms\n", + "Speed: 4.0ms preprocess, 65.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241024_134452.jpg: 640x480 1 cat, 1 bed, 21.0ms\n", + "Speed: 5.0ms preprocess, 21.0ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241101_145241.jpg: 640x480 1 cat, 1 bed, 27.0ms\n", + "Speed: 4.0ms preprocess, 27.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241115_195434.jpg: 640x480 1 person, 1 cat, 1 chair, 114.2ms\n", + "Speed: 6.0ms preprocess, 114.2ms inference, 8.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241115_195439.jpg: 640x480 1 person, 1 cat, 1 chair, 56.0ms\n", + "Speed: 4.0ms preprocess, 56.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241115_200624.jpg: 640x480 2 persons, 2 cats, 1 bowl, 1 bed, 103.2ms\n", + "Speed: 6.0ms preprocess, 103.2ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241115_200626.jpg: 640x480 1 person, 1 cat, 24.0ms\n", + "Speed: 4.0ms preprocess, 24.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241124_214430.jpg: 640x480 1 bottle, 1 bed, 21.0ms\n", + "Speed: 4.0ms preprocess, 21.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241124_220257.jpg: 640x480 1 cat, 1 bowl, 1 bed, 117.5ms\n", + "Speed: 5.0ms preprocess, 117.5ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241124_220259.jpg: 640x480 1 cat, 1 bed, 1 dining table, 11.0ms\n", + "Speed: 4.0ms preprocess, 11.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241129_085724.jpg: 640x480 1 bench, 13.0ms\n", + "Speed: 4.0ms preprocess, 13.0ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241206_164037.jpg: 640x480 1 person, 1 cat, 10.0ms\n", + "Speed: 3.0ms preprocess, 10.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241206_164040.jpg: 640x480 2 cats, 12.0ms\n", + "Speed: 2.0ms preprocess, 12.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241217_102418.jpg: 640x480 1 cat, 1 bowl, 15.0ms\n", + "Speed: 5.0ms preprocess, 15.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241222_132045.jpg: 640x480 1 cat, 1 bed, 16.0ms\n", + "Speed: 3.0ms preprocess, 16.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241222_132051.jpg: 640x480 2 cats, 42.0ms\n", + "Speed: 6.0ms preprocess, 42.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241222_132058.jpg: 640x480 2 cats, 69.5ms\n", + "Speed: 5.5ms preprocess, 69.5ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241222_132101.jpg: 480x640 2 cats, 55.1ms\n", + "Speed: 4.0ms preprocess, 55.1ms inference, 5.0ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241222_132106.jpg: 480x640 1 cat, 17.6ms\n", + "Speed: 6.0ms preprocess, 17.6ms inference, 4.5ms postprocess per image at shape (1, 3, 480, 640)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241224_180740.jpg: 640x480 (no detections), 43.2ms\n", + "Speed: 4.0ms preprocess, 43.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_130054.jpg: 640x480 1 cat, 1 bowl, 1 couch, 1 bed, 62.9ms\n", + "Speed: 4.6ms preprocess, 62.9ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_134500.jpg: 640x480 1 cat, 1 toilet, 49.9ms\n", + "Speed: 4.0ms preprocess, 49.9ms inference, 8.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_134517.jpg: 640x480 1 bear, 1 toilet, 37.5ms\n", + "Speed: 6.0ms preprocess, 37.5ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_134521.jpg: 640x480 1 person, 59.3ms\n", + "Speed: 6.0ms preprocess, 59.3ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_134625.jpg: 640x480 (no detections), 176.1ms\n", + "Speed: 5.0ms preprocess, 176.1ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_134627.jpg: 640x480 1 cat, 10.0ms\n", + "Speed: 3.0ms preprocess, 10.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_134634.jpg: 640x480 1 dog, 10.0ms\n", + "Speed: 3.0ms preprocess, 10.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_134635.jpg: 640x480 2 teddy bears, 15.1ms\n", + "Speed: 3.0ms preprocess, 15.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135201.jpg: 640x480 1 cat, 12.0ms\n", + "Speed: 3.0ms preprocess, 12.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135214.jpg: 640x480 (no detections), 15.0ms\n", + "Speed: 3.2ms preprocess, 15.0ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135215.jpg: 640x480 1 dog, 1 chair, 36.9ms\n", + "Speed: 4.0ms preprocess, 36.9ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135219.jpg: 640x480 1 person, 1 bicycle, 1 cat, 1 dog, 58.0ms\n", + "Speed: 5.0ms preprocess, 58.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135343(0).jpg: 640x480 1 cat, 3 chairs, 47.0ms\n", + "Speed: 4.0ms preprocess, 47.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135343.jpg: 640x480 2 cats, 1 chair, 59.6ms\n", + "Speed: 3.0ms preprocess, 59.6ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135345.jpg: 640x480 1 cat, 1 chair, 72.6ms\n", + "Speed: 4.0ms preprocess, 72.6ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135347.jpg: 640x480 2 cats, 1 dog, 58.0ms\n", + "Speed: 4.0ms preprocess, 58.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135352.jpg: 640x480 1 cat, 42.0ms\n", + "Speed: 4.0ms preprocess, 42.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135354.jpg: 640x480 1 cat, 65.0ms\n", + "Speed: 6.0ms preprocess, 65.0ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135707.jpg: 640x480 3 chairs, 1 bed, 104.3ms\n", + "Speed: 6.0ms preprocess, 104.3ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135708.jpg: 640x480 2 chairs, 12.1ms\n", + "Speed: 3.0ms preprocess, 12.1ms inference, 1.5ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135710.jpg: 640x480 1 cat, 2 chairs, 16.4ms\n", + "Speed: 3.0ms preprocess, 16.4ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135712.jpg: 640x480 1 cat, 1 chair, 13.1ms\n", + "Speed: 4.0ms preprocess, 13.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_140923.jpg: 640x480 (no detections), 11.0ms\n", + "Speed: 3.0ms preprocess, 11.0ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_140924.jpg: 640x480 2 persons, 14.0ms\n", + "Speed: 3.0ms preprocess, 14.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241227_150819.jpg: 640x480 1 person, 1 cat, 1 tv, 17.0ms\n", + "Speed: 3.0ms preprocess, 17.0ms inference, 4.4ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241227_150826.jpg: 640x480 1 person, 1 cat, 1 chair, 1 tv, 1 laptop, 15.0ms\n", + "Speed: 4.0ms preprocess, 15.0ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250105_143721.jpg: 640x480 2 cats, 2 chairs, 43.0ms\n", + "Speed: 6.0ms preprocess, 43.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250105_143723.jpg: 640x480 1 cat, 31.0ms\n", + "Speed: 5.0ms preprocess, 31.0ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250105_143727.jpg: 640x480 2 cats, 42.6ms\n", + "Speed: 5.0ms preprocess, 42.6ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250112_203850.jpg: 640x480 2 cats, 1 sports ball, 59.5ms\n", + "Speed: 6.0ms preprocess, 59.5ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250112_203857.jpg: 640x480 2 persons, 1 cat, 57.4ms\n", + "Speed: 4.0ms preprocess, 57.4ms inference, 8.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250112_203858.jpg: 640x480 1 cat, 1 teddy bear, 38.0ms\n", + "Speed: 4.0ms preprocess, 38.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250112_203900.jpg: 640x480 1 dog, 1 book, 66.0ms\n", + "Speed: 6.0ms preprocess, 66.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250112_203903.jpg: 640x480 1 sheep, 1 sports ball, 55.5ms\n", + "Speed: 6.0ms preprocess, 55.5ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174816.jpg: 640x480 1 person, 1 cat, 43.0ms\n", + "Speed: 4.0ms preprocess, 43.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174818.jpg: 640x480 (no detections), 36.4ms\n", + "Speed: 4.0ms preprocess, 36.4ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174833.jpg: 640x480 1 person, 1 teddy bear, 45.0ms\n", + "Speed: 5.0ms preprocess, 45.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174904.jpg: 640x480 1 person, 1 chair, 1 tv, 1 clock, 1 teddy bear, 40.1ms\n", + "Speed: 4.0ms preprocess, 40.1ms inference, 8.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174905.jpg: 640x480 1 person, 1 chair, 1 tv, 2 teddy bears, 39.5ms\n", + "Speed: 4.0ms preprocess, 39.5ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174908.jpg: 640x480 1 person, 1 tv, 1 teddy bear, 60.6ms\n", + "Speed: 5.0ms preprocess, 60.6ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174912.jpg: 640x480 1 person, 2 chairs, 1 dining table, 1 teddy bear, 55.0ms\n", + "Speed: 7.0ms preprocess, 55.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174913.jpg: 640x480 1 person, 1 chair, 1 teddy bear, 60.2ms\n", + "Speed: 4.0ms preprocess, 60.2ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174915.jpg: 640x480 1 person, 2 chairs, 1 teddy bear, 68.1ms\n", + "Speed: 5.6ms preprocess, 68.1ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174920.jpg: 640x480 1 person, 3 chairs, 1 tv, 41.0ms\n", + "Speed: 4.0ms preprocess, 41.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174949(0).jpg: 640x480 1 person, 1 couch, 1 bed, 46.5ms\n", + "Speed: 5.0ms preprocess, 46.5ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174949.jpg: 640x480 1 person, 1 couch, 1 bed, 1 book, 53.6ms\n", + "Speed: 5.0ms preprocess, 53.6ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_175124.jpg: 640x480 (no detections), 53.0ms\n", + "Speed: 4.0ms preprocess, 53.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250117_172955.jpg: 640x480 1 person, 1 cat, 1 bed, 52.1ms\n", + "Speed: 4.0ms preprocess, 52.1ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250120_225956.jpg: 640x480 1 cat, 49.8ms\n", + "Speed: 5.0ms preprocess, 49.8ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250121_190039.jpg: 640x480 1 cat, 1 dog, 62.0ms\n", + "Speed: 6.0ms preprocess, 62.0ms inference, 8.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250121_190043.jpg: 640x480 2 cats, 1 chair, 65.4ms\n", + "Speed: 6.0ms preprocess, 65.4ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250121_190046.jpg: 640x480 1 dog, 1 chair, 3 books, 11.0ms\n", + "Speed: 2.0ms preprocess, 11.0ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250122_142944.jpg: 640x480 3 cats, 1 bed, 11.5ms\n", + "Speed: 3.0ms preprocess, 11.5ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250122_142946.jpg: 640x480 4 cats, 1 bed, 14.0ms\n", + "Speed: 4.0ms preprocess, 14.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250122_142948.jpg: 640x480 3 cats, 2 beds, 10.0ms\n", + "Speed: 3.0ms preprocess, 10.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250122_142949.jpg: 640x480 2 cats, 1 bed, 18.0ms\n", + "Speed: 3.0ms preprocess, 18.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250122_142953.jpg: 640x480 2 cats, 1 potted plant, 1 bed, 17.0ms\n", + "Speed: 5.0ms preprocess, 17.0ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250122_142958.jpg: 640x480 1 cat, 2 beds, 28.0ms\n", + "Speed: 4.0ms preprocess, 28.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250122_191929.jpg: 640x480 1 dog, 2 books, 34.3ms\n", + "Speed: 4.0ms preprocess, 34.3ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\IMG-20240730-WA0005.jpg: 640x480 2 persons, 1 couch, 45.4ms\n", + "Speed: 5.0ms preprocess, 45.4ms inference, 7.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\IMG_20240318_231934_252.webp: 640x384 1 cat, 34.5ms\n", + "Speed: 3.0ms preprocess, 34.5ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 384)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\IMG_20241207_211456_238.jpg: 640x480 1 person, 1 cat, 1 bed, 63.9ms\n", + "Speed: 5.0ms preprocess, 63.9ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\IMG_20241229_221404_122.jpg: 640x512 1 person, 2 dogs, 81.0ms\n", + "Speed: 6.0ms preprocess, 81.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 512)\n", + "Results saved to \u001b[1mruns\\detect\\predict2\u001b[0m\n", + "Processed all images. YOLO format bounding boxes saved to output/\n" + ] + } + ], + "source": [ + "# Iterate through images in the dataset folder\n", + "for image_name in os.listdir(images_folder):\n", + " image_path = os.path.join(images_folder, image_name)\n", + " image = cv2.imread(image_path)\n", + "\n", + " # Run YOLO inference\n", + " results = model.predict(source=image_path, save=True)\n", + "\n", + " # Prepare a list to collect bounding box data for YOLO format\n", + " bounding_boxes = []\n", + "\n", + " # Get the image dimensions for normalization\n", + " image_height, image_width, _ = image.shape\n", + "\n", + " # Iterate over the results to get bounding boxes\n", + " for result in results:\n", + " boxes = result.boxes # List of detected boxes\n", + "\n", + " for box in boxes:\n", + " # Get coordinates, class id, and confidence score\n", + " x_min, y_min, x_max, y_max = map(int, box.xyxy[0]) # Bounding box coordinates\n", + " class_id = int(box.cls[0]) # Class id\n", + "\n", + " # Store the bounding box details\n", + " bounding_boxes.append({\n", + " \"class_id\": class_id,\n", + " \"x_min\": x_min,\n", + " \"y_min\": y_min,\n", + " \"x_max\": x_max,\n", + " \"y_max\": y_max\n", + " })\n", + "\n", + " # Save the bounding boxes to a YOLO format .txt file\n", + " yolo_txt_filename = os.path.join(output_folder, f\"{image_name.split('.')[0]}.txt\")\n", + " save_yolo_format(bounding_boxes, yolo_txt_filename, image_width, image_height)\n", + "\n", + " # Optionally: Draw bounding boxes on the image (to save as visual feedback)\n", + " for box in bounding_boxes:\n", + " x_min, y_min, x_max, y_max = box[\"x_min\"], box[\"y_min\"], box[\"x_max\"], box[\"y_max\"]\n", + " cv2.rectangle(image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)\n", + "\n", + "print(f\"Processed all images. YOLO format bounding boxes saved to {output_folder}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "image 1/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\1818949000-IMG-20240118-WA0001.jpg: 640x384 1 cat, 1 chair, 28.4ms\n", + "image 2/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_103335.jpg: 640x480 1 cat, 1 bear, 2 chairs, 84.9ms\n", + "image 3/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_141622.jpg: 640x480 1 person, 2 cats, 145.9ms\n", + "image 4/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_184600.jpg: 640x480 1 person, 1 cat, 1 remote, 1 book, 1 teddy bear, 77.2ms\n", + "image 5/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_195833.jpg: 640x480 1 cat, 1 bed, 56.5ms\n", + "image 6/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_200052.jpg: 640x480 1 person, 1 cat, 68.0ms\n", + "image 7/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_200057.jpg: 640x480 1 cat, 1 bed, 48.0ms\n", + "image 8/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_200102.jpg: 640x480 1 person, 1 cat, 1 bed, 41.0ms\n", + "image 9/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201439.jpg: 640x480 1 cat, 49.0ms\n", + "image 10/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201442.jpg: 640x480 1 cat, 1 bottle, 73.7ms\n", + "image 11/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201443.jpg: 640x480 1 cat, 1 bottle, 66.1ms\n", + "image 12/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201446.jpg: 640x480 1 cat, 1 bed, 73.9ms\n", + "image 13/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201447.jpg: 640x480 1 cat, 1 dog, 67.5ms\n", + "image 14/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201448.jpg: 640x480 1 cat, 1 dog, 17.0ms\n", + "image 15/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201452.jpg: 640x480 1 cat, 1 handbag, 24.8ms\n", + "image 16/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201454.jpg: 640x480 1 cat, 1 dog, 28.0ms\n", + "image 17/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201458.jpg: 640x480 1 cat, 1 handbag, 25.0ms\n", + "image 18/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201503.jpg: 640x480 1 dog, 1 handbag, 33.0ms\n", + "image 19/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201510.jpg: 640x480 1 cat, 1 handbag, 25.0ms\n", + "image 20/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_232857.jpg: 640x480 1 cat, 1 suitcase, 27.0ms\n", + "image 21/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240310_140207.jpg: 640x480 1 cat, 97.6ms\n", + "image 22/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240311_195350.jpg: 640x480 1 cat, 1 handbag, 1 bed, 17.0ms\n", + "image 23/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240311_195352.jpg: 640x480 1 cat, 10.0ms\n", + "image 24/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240311_195357.jpg: 640x480 1 cat, 1 chair, 16.0ms\n", + "image 25/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240311_195403.jpg: 640x480 1 cat, 14.0ms\n", + "image 26/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_180219.jpg: 640x480 1 cat, 1 couch, 13.8ms\n", + "image 27/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185655.jpg: 640x480 1 cat, 1 toilet, 11.0ms\n", + "image 28/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185658.jpg: 640x480 2 cats, 17.0ms\n", + "image 29/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185700.jpg: 640x480 4 cats, 1 bowl, 12.0ms\n", + "image 30/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185702.jpg: 640x480 2 cats, 13.0ms\n", + "image 31/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185718(0).jpg: 640x480 2 cats, 1 bowl, 1 chair, 11.0ms\n", + "image 32/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185718.jpg: 640x480 2 cats, 1 bowl, 11.0ms\n", + "image 33/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185719.jpg: 640x480 1 cat, 14.0ms\n", + "image 34/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185729.jpg: 640x480 1 cat, 21.0ms\n", + "image 35/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185730.jpg: 640x480 1 cat, 1 chair, 18.0ms\n", + "image 36/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185733.jpg: 640x480 1 cat, 18.5ms\n", + "image 37/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185734.jpg: 640x480 1 cat, 1 chair, 14.0ms\n", + "image 38/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240313_203246.jpg: 640x480 1 person, 1 cat, 1 bed, 63.7ms\n", + "image 39/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240313_203248.jpg: 640x480 1 cat, 40.4ms\n", + "image 40/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_170048.jpg: 640x480 1 cat, 14.8ms\n", + "image 41/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_170048_remastered.jpg: 640x480 1 cat, 1 dog, 15.0ms\n", + "image 42/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_171004.jpg: 640x480 1 cat, 18.0ms\n", + "image 43/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_171030.jpg: 640x480 1 dog, 19.2ms\n", + "image 44/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_191222.jpg: 640x480 1 cat, 1 chair, 20.5ms\n", + "image 45/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_191224(0).jpg: 640x480 1 cat, 1 umbrella, 22.0ms\n", + "image 46/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_191224.jpg: 640x480 1 cat, 1 bottle, 23.0ms\n", + "image 47/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_191225.jpg: 640x480 1 cat, 25.0ms\n", + "image 48/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_191226.jpg: 640x480 1 cat, 24.0ms\n", + "image 49/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_191227.jpg: 640x480 1 cat, 39.5ms\n", + "image 50/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240316_104313.jpg: 640x480 1 cat, 1 bottle, 29.0ms\n", + "image 51/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240316_104328.jpg: 640x480 1 cat, 1 bottle, 1 bowl, 29.7ms\n", + "image 52/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240316_104330.jpg: 640x480 1 cat, 1 bottle, 1 bowl, 25.0ms\n", + "image 53/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240316_104331.jpg: 640x480 1 cat, 25.0ms\n", + "image 54/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240316_104334.jpg: 640x480 1 person, 1 dog, 1 tv, 26.6ms\n", + "image 55/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240316_220146.jpg: 640x480 1 person, 2 dogs, 25.7ms\n", + "image 56/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240316_220153.jpg: 640x480 2 cats, 146.7ms\n", + "image 57/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240316_220210.jpg: 640x480 1 person, 3 cats, 13.0ms\n", + "image 58/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_002355.jpg: 640x480 1 cat, 11.0ms\n", + "image 59/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_002404.jpg: 640x480 1 cat, 14.0ms\n", + "image 60/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_002407.jpg: 640x480 1 cat, 19.1ms\n", + "image 61/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_002416.jpg: 640x480 1 cat, 11.0ms\n", + "image 62/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_002419.jpg: 640x480 1 cat, 16.1ms\n", + "image 63/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204422.jpg: 640x480 1 person, 1 cat, 1 bed, 14.0ms\n", + "image 64/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204426.jpg: 640x480 1 cat, 1 bear, 1 chair, 8.0ms\n", + "image 65/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204429.jpg: 640x480 1 cat, 1 chair, 13.0ms\n", + "image 66/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204431.jpg: 640x480 1 cat, 15.0ms\n", + "image 67/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204434.jpg: 640x480 1 cat, 1 bed, 10.0ms\n", + "image 68/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204436.jpg: 640x480 1 cat, 1 elephant, 9.0ms\n", + "image 69/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204501.jpg: 640x480 1 bear, 12.0ms\n", + "image 70/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204503.jpg: 640x480 1 cat, 10.0ms\n", + "image 71/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240318_194443.jpg: 640x480 1 cat, 1 bed, 1 teddy bear, 14.5ms\n", + "image 72/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240320_171347.jpg: 640x480 1 bench, 1 cat, 11.0ms\n", + "image 73/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185912(0).jpg: 640x480 2 teddy bears, 14.0ms\n", + "image 74/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185912.jpg: 640x480 1 cat, 1 teddy bear, 15.7ms\n", + "image 75/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185914.jpg: 640x480 1 cat, 1 teddy bear, 14.0ms\n", + "image 76/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185916.jpg: 640x480 1 cat, 19.0ms\n", + "image 77/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185917.jpg: 640x480 1 cat, 12.0ms\n", + "image 78/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185921.jpg: 640x480 1 cat, 13.0ms\n", + "image 79/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185922.jpg: 640x480 1 cat, 16.8ms\n", + "image 80/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185924.jpg: 640x480 1 cat, 16.0ms\n", + "image 81/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185950.jpg: 480x640 1 cat, 17.0ms\n", + "image 82/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_190008.jpg: 480x640 1 dog, 1 bed, 25.0ms\n", + "image 83/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_190014.jpg: 480x640 1 cat, 1 dog, 27.0ms\n", + "image 84/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_193424.jpg: 640x480 2 benchs, 1 cat, 1 dining table, 58.7ms\n", + "image 85/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_193425.jpg: 640x480 1 bench, 54.0ms\n", + "image 86/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_193430.jpg: 640x480 1 dog, 45.0ms\n", + "image 87/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_193431.jpg: 640x480 1 bench, 1 cat, 161.7ms\n", + "image 88/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_193433.jpg: 640x480 1 bench, 1 cat, 13.0ms\n", + "image 89/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_193448.jpg: 640x480 1 surfboard, 13.4ms\n", + "image 90/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_193501.jpg: 640x480 (no detections), 13.2ms\n", + "image 91/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240324_175352.jpg: 640x480 1 cat, 13.0ms\n", + "image 92/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240324_175354.jpg: 640x480 1 cat, 25.0ms\n", + "image 93/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240324_175358.jpg: 640x480 1 cat, 30.5ms\n", + "image 94/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240324_175402.jpg: 640x480 1 cat, 21.0ms\n", + "image 95/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240324_175405.jpg: 640x480 1 cat, 28.0ms\n", + "image 96/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240324_175406.jpg: 640x480 1 cat, 22.0ms\n", + "image 97/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240324_175407.jpg: 640x480 1 cat, 23.0ms\n", + "image 98/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240325_163728.jpg: 640x480 2 cats, 1 laptop, 38.0ms\n", + "image 99/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240326_131427.jpg: 640x480 1 cat, 3 chairs, 5 potted plants, 3 vases, 31.0ms\n", + "image 100/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240326_131431.jpg: 640x480 1 cat, 1 suitcase, 49.6ms\n", + "image 101/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240326_183749.jpg: 640x480 1 cat, 42.0ms\n", + "image 102/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240326_183757.jpg: 640x480 1 cat, 59.5ms\n", + "image 103/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240326_183759.jpg: 640x480 1 cat, 43.2ms\n", + "image 104/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240326_183803.jpg: 640x480 1 cat, 33.0ms\n", + "image 105/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240326_183810.jpg: 480x640 1 cat, 40.0ms\n", + "image 106/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240327_135547.jpg: 640x480 1 cat, 35.2ms\n", + "image 107/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240327_135550.jpg: 640x480 1 cat, 17.0ms\n", + "image 108/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240327_135553.jpg: 640x480 1 cat, 1 bed, 18.0ms\n", + "image 109/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240327_135555.jpg: 640x480 1 cat, 1 couch, 1 tv, 15.0ms\n", + "image 110/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240327_135643.jpg: 640x480 1 cat, 29.6ms\n", + "image 111/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240329_223942(0).jpg: 640x480 1 cat, 12.0ms\n", + "image 112/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240329_223942.jpg: 640x480 1 cat, 1 chair, 13.0ms\n", + "image 113/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240329_223945.jpg: 640x480 1 cat, 14.0ms\n", + "image 114/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240404_224228.jpg: 640x480 1 cat, 37.0ms\n", + "image 115/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240404_224230.jpg: 640x480 1 cat, 1 dining table, 33.0ms\n", + "image 116/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240404_224232.jpg: 640x480 2 cats, 23.0ms\n", + "image 117/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240404_224233.jpg: 640x480 1 cat, 24.0ms\n", + "image 118/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240404_224236.jpg: 640x480 1 cat, 21.0ms\n", + "image 119/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240404_224237.jpg: 640x480 1 cat, 23.0ms\n", + "image 120/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240404_224242.jpg: 640x480 1 cat, 27.0ms\n", + "image 121/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240405_152307.jpg: 640x480 1 cat, 1 chair, 19.9ms\n", + "image 122/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240405_152308.jpg: 640x480 1 cat, 1 chair, 24.0ms\n", + "image 123/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240405_152310.jpg: 640x480 1 cat, 27.0ms\n", + "image 124/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240405_152316.jpg: 640x480 1 cat, 20.0ms\n", + "image 125/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240405_152338.jpg: 640x480 1 cat, 27.9ms\n", + "image 126/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240405_152341.jpg: 640x480 1 cat, 1 chair, 29.0ms\n", + "image 127/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233450.jpg: 640x480 2 chairs, 1 book, 41.0ms\n", + "image 128/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233452.jpg: 640x480 1 chair, 62.0ms\n", + "image 129/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233500.jpg: 640x480 1 cat, 26.0ms\n", + "image 130/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233501.jpg: 640x480 1 cat, 1 bed, 25.0ms\n", + "image 131/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233502.jpg: 640x480 1 cat, 34.0ms\n", + "image 132/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233503.jpg: 640x480 1 bench, 1 cat, 28.0ms\n", + "image 133/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233504.jpg: 640x480 1 cat, 29.0ms\n", + "image 134/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233505.jpg: 640x480 1 cat, 98.1ms\n", + "image 135/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233506.jpg: 640x480 1 cat, 23.0ms\n", + "image 136/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233553.jpg: 480x640 (no detections), 20.5ms\n", + "image 137/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233600.jpg: 480x640 1 cat, 15.6ms\n", + "image 138/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233601.jpg: 480x640 (no detections), 13.0ms\n", + "image 139/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233605.jpg: 480x640 (no detections), 14.0ms\n", + "image 140/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233736.jpg: 640x480 1 bench, 1 apple, 1 bed, 25.2ms\n", + "image 141/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233740.jpg: 640x480 1 bench, 24.0ms\n", + "image 142/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233759.jpg: 640x480 (no detections), 33.0ms\n", + "image 143/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233835.jpg: 640x480 1 bench, 71.3ms\n", + "image 144/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234112.jpg: 640x480 2 cats, 1 potted plant, 28.0ms\n", + "image 145/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234115.jpg: 640x480 1 cat, 1 dining table, 31.0ms\n", + "image 146/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234507.jpg: 640x480 1 bench, 1 cat, 1 chair, 31.0ms\n", + "image 147/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234510.jpg: 640x480 1 cat, 2 chairs, 26.4ms\n", + "image 148/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234512.jpg: 640x480 1 cat, 25.0ms\n", + "image 149/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234514.jpg: 640x480 1 cat, 38.3ms\n", + "image 150/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234520.jpg: 640x480 2 cats, 1 bed, 1 toilet, 83.0ms\n", + "image 151/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234523.jpg: 640x480 1 cat, 26.0ms\n", + "image 152/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234524.jpg: 640x480 2 cats, 27.0ms\n", + "image 153/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234614.jpg: 640x480 1 bird, 24.0ms\n", + "image 154/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234630.jpg: 640x480 1 cat, 1 dog, 23.0ms\n", + "image 155/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234749.jpg: 640x480 1 cat, 24.0ms\n", + "image 156/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_235449.jpg: 640x480 1 cat, 23.0ms\n", + "image 157/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_235454.jpg: 640x480 1 chair, 1 teddy bear, 28.0ms\n", + "image 158/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240414_204830.jpg: 640x480 1 cow, 65.8ms\n", + "image 159/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240414_204832.jpg: 640x480 2 cats, 14.0ms\n", + "image 160/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240415_191936.jpg: 640x480 1 cat, 17.0ms\n", + "image 161/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240416_131400.jpg: 640x480 1 person, 1 cat, 1 chair, 1 couch, 1 tv, 23.0ms\n", + "image 162/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240421_133252.jpg: 640x480 1 dog, 13.7ms\n", + "image 163/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240421_133313.jpg: 640x480 1 dog, 1 suitcase, 14.0ms\n", + "image 164/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240423_103248.jpg: 480x640 1 cat, 14.0ms\n", + "image 165/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240424_204037.jpg: 640x480 2 cats, 1 chair, 17.0ms\n", + "image 166/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240425_224816.jpg: 640x480 1 cat, 12.0ms\n", + "image 167/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240425_224817(0).jpg: 640x480 1 cat, 30.0ms\n", + "image 168/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240425_224817.jpg: 640x480 1 cat, 32.6ms\n", + "image 169/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240425_224819.jpg: 640x480 1 cat, 23.0ms\n", + "image 170/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240426_133718.jpg: 640x480 1 cat, 22.0ms\n", + "image 171/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240426_133720.jpg: 640x480 1 cat, 19.0ms\n", + "image 172/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240427_113516.jpg: 640x480 1 cat, 21.0ms\n", + "image 173/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240427_113519.jpg: 640x480 1 cat, 1 chair, 14.0ms\n", + "image 174/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240427_130031.jpg: 640x480 1 cat, 15.0ms\n", + "image 175/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240427_130032.jpg: 640x480 1 cat, 25.0ms\n", + "image 176/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240427_130041.jpg: 640x480 1 cat, 16.0ms\n", + "image 177/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240503_173937.jpg: 640x480 1 cat, 46.1ms\n", + "image 178/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240503_173948.jpg: 480x640 1 cat, 1 chair, 32.0ms\n", + "image 179/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240509_185557.jpg: 640x480 1 bench, 1 cat, 1 backpack, 1 chair, 1 potted plant, 71.0ms\n", + "image 180/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240509_185559.jpg: 640x480 1 cat, 1 bear, 1 tv, 27.3ms\n", + "image 181/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240509_185601.jpg: 640x480 1 cat, 29.0ms\n", + "image 182/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240509_185604.jpg: 640x480 1 cat, 54.0ms\n", + "image 183/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240509_185606.jpg: 640x480 2 cats, 1 dog, 34.0ms\n", + "image 184/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240509_185608.jpg: 640x480 2 cats, 1 potted plant, 86.3ms\n", + "image 185/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240509_185612.jpg: 640x480 1 cat, 74.0ms\n", + "image 186/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240511_185650.jpg: 640x480 2 cats, 4 chairs, 29.0ms\n", + "image 187/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240511_185651.jpg: 640x480 2 cats, 1 cup, 2 chairs, 32.7ms\n", + "image 188/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240511_185652.jpg: 640x480 2 cats, 1 cup, 2 chairs, 24.9ms\n", + "image 189/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240511_185656.jpg: 640x480 1 bottle, 2 bowls, 3 chairs, 3 potted plants, 1 dining table, 1 tv, 3 vases, 31.0ms\n", + "image 190/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240511_194053.jpg: 640x480 1 cat, 1 chair, 26.5ms\n", + "image 191/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240511_210228.jpg: 640x480 1 cat, 19.0ms\n", + "image 192/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_071046.jpg: 640x480 1 cat, 1 dog, 30.5ms\n", + "image 193/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_071050.jpg: 640x480 1 cat, 2 bottles, 1 refrigerator, 94.8ms\n", + "image 194/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_071052.jpg: 640x480 1 cat, 2 bottles, 70.0ms\n", + "image 195/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_071053.jpg: 640x480 1 cat, 2 bottles, 67.0ms\n", + "image 196/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_072915.jpg: 640x480 1 cat, 1 couch, 25.0ms\n", + "image 197/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_231919.jpg: 640x480 1 cat, 1 mouse, 29.0ms\n", + "image 198/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_231920.jpg: 640x480 1 cat, 76.0ms\n", + "image 199/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_235311.jpg: 640x480 1 cat, 1 bowl, 21.0ms\n", + "image 200/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_235315.jpg: 640x480 1 cat, 31.0ms\n", + "image 201/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_235317.jpg: 640x480 1 cat, 1 bowl, 87.9ms\n", + "image 202/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_090846.jpg: 640x480 1 cat, 25.0ms\n", + "image 203/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_090900.jpg: 640x480 1 cat, 29.6ms\n", + "image 204/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_090907.jpg: 640x480 1 cat, 65.8ms\n", + "image 205/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_090911.jpg: 640x480 1 cat, 35.0ms\n", + "image 206/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_090915.jpg: 640x480 1 person, 1 dog, 42.0ms\n", + "image 207/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180307.jpg: 640x480 2 cats, 96.1ms\n", + "image 208/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180310.jpg: 640x480 2 cats, 1 handbag, 1 suitcase, 18.0ms\n", + "image 209/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180316.jpg: 640x480 1 cat, 1 couch, 12.0ms\n", + "image 210/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180318.jpg: 640x480 1 cat, 1 book, 13.8ms\n", + "image 211/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180331.jpg: 640x480 1 cat, 25.0ms\n", + "image 212/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180334.jpg: 640x480 1 cat, 25.0ms\n", + "image 213/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180528.jpg: 640x480 1 dog, 18.0ms\n", + "image 214/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180532.jpg: 640x480 1 cat, 24.2ms\n", + "image 215/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180534.jpg: 640x480 (no detections), 48.9ms\n", + "image 216/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180536.jpg: 640x480 (no detections), 35.0ms\n", + "image 217/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180542.jpg: 640x480 1 person, 21.0ms\n", + "image 218/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180847.jpg: 640x480 1 cat, 23.0ms\n", + "image 219/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180849.jpg: 640x480 2 cats, 1 suitcase, 20.0ms\n", + "image 220/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180853.jpg: 640x480 1 cat, 1 couch, 24.0ms\n", + "image 221/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180937.jpg: 640x480 1 cat, 29.0ms\n", + "image 222/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180939.jpg: 640x480 1 cat, 26.0ms\n", + "image 223/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240514_193135.jpg: 640x480 1 person, 3 cats, 1 dog, 2 chairs, 28.0ms\n", + "image 224/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240514_193136.jpg: 640x480 1 person, 4 cats, 37.0ms\n", + "image 225/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240514_213919(0).jpg: 640x480 1 cat, 1 chair, 41.0ms\n", + "image 226/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240514_213919.jpg: 640x480 1 cat, 1 chair, 1 couch, 1 bed, 37.0ms\n", + "image 227/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240514_223849.jpg: 640x480 1 cat, 1 chair, 1 bed, 50.0ms\n", + "image 228/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240514_223851.jpg: 640x480 1 cat, 1 cup, 2 chairs, 1 tv, 1 book, 34.0ms\n", + "image 229/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240603_225020(0).jpg: 640x480 1 cat, 1 dog, 91.3ms\n", + "image 230/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240603_225020.jpg: 640x480 1 cat, 40.0ms\n", + "image 231/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240603_225023.jpg: 640x480 1 dog, 27.5ms\n", + "image 232/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240603_225026.jpg: 640x480 1 dog, 29.0ms\n", + "image 233/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240603_225027.jpg: 640x480 1 dog, 23.0ms\n", + "image 234/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192457.jpg: 640x480 1 cat, 1 couch, 33.0ms\n", + "image 235/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192458(0).jpg: 640x480 1 cat, 1 couch, 30.0ms\n", + "image 236/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192458.jpg: 640x480 1 cat, 1 couch, 69.0ms\n", + "image 237/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192459(0).jpg: 640x480 1 cat, 1 couch, 23.0ms\n", + "image 238/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192459.jpg: 640x480 1 cat, 1 couch, 19.2ms\n", + "image 239/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192501(0).jpg: 640x480 1 cat, 1 couch, 31.2ms\n", + "image 240/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192501.jpg: 640x480 1 cat, 27.0ms\n", + "image 241/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192502(0).jpg: 640x480 1 cat, 1 couch, 76.5ms\n", + "image 242/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192502.jpg: 640x480 1 cat, 1 couch, 31.0ms\n", + "image 243/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192503.jpg: 640x480 1 cat, 1 dog, 1 couch, 30.8ms\n", + "image 244/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192504.jpg: 640x480 1 cat, 1 bed, 31.0ms\n", + "image 245/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192505.jpg: 640x480 1 cat, 1 bed, 26.0ms\n", + "image 246/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192506.jpg: 640x480 1 cat, 1 couch, 1 bed, 26.4ms\n", + "image 247/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192508.jpg: 640x480 1 cat, 27.0ms\n", + "image 248/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192509.jpg: 640x480 1 cat, 1 bed, 25.0ms\n", + "image 249/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192510.jpg: 640x480 1 dog, 1 bed, 23.0ms\n", + "image 250/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192511.jpg: 640x480 1 dog, 2 beds, 23.0ms\n", + "image 251/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192512(0).jpg: 640x480 1 cat, 1 dog, 1 bed, 26.0ms\n", + "image 252/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192512.jpg: 640x480 1 dog, 1 bed, 42.0ms\n", + "image 253/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192513.jpg: 640x480 1 cat, 1 remote, 42.0ms\n", + "image 254/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192514.jpg: 640x480 1 cat, 1 bed, 45.0ms\n", + "image 255/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192515(0).jpg: 640x480 1 cat, 29.8ms\n", + "image 256/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192515.jpg: 640x480 1 cat, 36.0ms\n", + "image 257/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192533.jpg: 640x480 1 cat, 1 bed, 33.0ms\n", + "image 258/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192534(0).jpg: 640x480 1 cat, 36.1ms\n", + "image 259/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192534.jpg: 640x480 1 cat, 31.4ms\n", + "image 260/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192535.jpg: 640x480 1 cat, 30.1ms\n", + "image 261/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192537.jpg: 640x480 1 cat, 1 bed, 28.0ms\n", + "image 262/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192538(0).jpg: 640x480 1 cat, 35.0ms\n", + "image 263/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192538.jpg: 640x480 1 cat, 1 couch, 1 bed, 27.0ms\n", + "image 264/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192539(0).jpg: 640x480 1 cat, 36.0ms\n", + "image 265/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192539.jpg: 640x480 1 cat, 31.2ms\n", + "image 266/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192542.jpg: 640x480 1 cat, 33.0ms\n", + "image 267/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192544.jpg: 640x480 1 cat, 1 couch, 1 bed, 29.0ms\n", + "image 268/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240618_205057.jpg: 640x480 1 cat, 1 book, 33.0ms\n", + "image 269/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240618_205103.jpg: 640x480 1 cat, 51.0ms\n", + "image 270/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240618_205105.jpg: 640x480 1 cat, 43.0ms\n", + "image 271/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240618_205110.jpg: 640x480 1 cat, 27.0ms\n", + "image 272/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240618_205113.jpg: 640x480 1 cat, 28.0ms\n", + "image 273/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240618_205119.jpg: 480x640 1 cat, 24.0ms\n", + "image 274/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240618_205121.jpg: 480x640 1 cat, 20.1ms\n", + "image 275/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240623_192721.jpg: 640x480 2 cats, 1 dog, 39.0ms\n", + "image 276/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240624_200545.jpg: 640x480 1 cat, 1 bottle, 1 potted plant, 27.0ms\n", + "image 277/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240624_200548.jpg: 640x480 1 cat, 30.8ms\n", + "image 278/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240624_200549.jpg: 640x480 1 cat, 35.2ms\n", + "image 279/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_012349.jpg: 640x480 1 cat, 35.0ms\n", + "image 280/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_012352.jpg: 640x480 1 cat, 28.0ms\n", + "image 281/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_012400.jpg: 640x480 1 cat, 28.3ms\n", + "image 282/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_012402.jpg: 640x480 1 cat, 33.0ms\n", + "image 283/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_012407.jpg: 640x480 1 cat, 30.0ms\n", + "image 284/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_012408.jpg: 640x480 1 cat, 47.8ms\n", + "image 285/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_231410.jpg: 640x480 1 cat, 35.1ms\n", + "image 286/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_231412.jpg: 640x480 1 cat, 33.5ms\n", + "image 287/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_231413.jpg: 640x480 1 cat, 1 tv, 35.1ms\n", + "image 288/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240704_202652.jpg: 640x480 1 cat, 1 dog, 31.0ms\n", + "image 289/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240711_221427.jpg: 640x480 1 cat, 36.0ms\n", + "image 290/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240711_221435.jpg: 640x480 3 cats, 27.0ms\n", + "image 291/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165019.jpg: 640x480 1 cat, 2 potted plants, 1 bed, 1 vase, 27.0ms\n", + "image 292/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165021.jpg: 640x480 2 cats, 1 couch, 5 potted plants, 1 bed, 1 tv, 1 vase, 27.0ms\n", + "image 293/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165025.jpg: 640x480 1 cat, 7 potted plants, 2 beds, 1 vase, 26.7ms\n", + "image 294/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165028.jpg: 640x480 1 cat, 1 bottle, 2 cups, 1 chair, 3 potted plants, 1 bed, 1 vase, 29.0ms\n", + "image 295/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165029.jpg: 640x480 1 cat, 3 potted plants, 1 bed, 3 vases, 32.0ms\n", + "image 296/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165031.jpg: 640x480 1 cat, 6 potted plants, 1 bed, 3 vases, 29.0ms\n", + "image 297/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165033.jpg: 640x480 2 cats, 1 cup, 1 chair, 2 potted plants, 1 tv, 1 keyboard, 33.0ms\n", + "image 298/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165040.jpg: 640x480 1 cat, 1 chair, 2 potted plants, 1 bed, 1 vase, 31.0ms\n", + "image 299/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_224858.jpg: 640x480 1 cat, 1 bed, 32.0ms\n", + "image 300/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_224902.jpg: 640x480 1 cat, 1 bed, 49.0ms\n", + "image 301/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_224903.jpg: 640x480 1 cat, 28.0ms\n", + "image 302/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_224905.jpg: 640x480 1 cat, 34.0ms\n", + "image 303/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240725_133737.jpg: 640x480 1 person, 1 cup, 30.0ms\n", + "image 304/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240726_225449.jpg: 640x480 1 bench, 2 cats, 29.0ms\n", + "image 305/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240727_085826.jpg: 640x480 1 person, 1 cat, 36.0ms\n", + "image 306/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240802_203206.jpg: 640x480 1 cat, 34.0ms\n", + "image 307/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102342.jpg: 480x640 2 persons, 1 cat, 26.3ms\n", + "image 308/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102347.jpg: 480x640 1 person, 2 cats, 23.2ms\n", + "image 309/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102351.jpg: 480x640 2 persons, 2 cats, 32.0ms\n", + "image 310/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102354.jpg: 480x640 2 persons, 1 cat, 1 suitcase, 24.0ms\n", + "image 311/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102402.jpg: 480x640 1 cat, 1 umbrella, 22.0ms\n", + "image 312/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102407.jpg: 480x640 2 persons, 1 cat, 22.0ms\n", + "image 313/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102411.jpg: 480x640 1 person, 1 cat, 23.7ms\n", + "image 314/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102415.jpg: 480x640 1 person, 1 cat, 25.0ms\n", + "image 315/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_113806.jpg: 640x480 1 person, 1 cat, 2 suitcases, 58.4ms\n", + "image 316/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_145117.jpg: 640x480 1 cat, 12.2ms\n", + "image 317/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_145118.jpg: 640x480 1 cat, 9.0ms\n", + "image 318/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_171056.jpg: 640x480 1 cat, 1 chair, 3 books, 10.0ms\n", + "image 319/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_171058.jpg: 640x480 1 cat, 1 chair, 2 books, 11.0ms\n", + "image 320/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_171100.jpg: 640x480 1 dog, 3 books, 9.0ms\n", + "image 321/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_171104.jpg: 640x480 1 cat, 1 suitcase, 1 chair, 4 books, 8.0ms\n", + "image 322/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_171110.jpg: 640x480 1 cat, 1 suitcase, 6 books, 9.0ms\n", + "image 323/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_171111.jpg: 640x480 1 cat, 1 chair, 3 books, 12.0ms\n", + "image 324/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_203211.jpg: 640x480 2 cats, 10.0ms\n", + "image 325/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_203213.jpg: 640x480 2 cats, 1 dog, 9.0ms\n", + "image 326/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_203217.jpg: 640x480 2 cats, 12.0ms\n", + "image 327/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_203219.jpg: 640x480 2 cats, 12.2ms\n", + "image 328/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_164652.jpg: 640x480 1 cat, 1 cake, 11.1ms\n", + "image 329/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_164655.jpg: 640x480 2 cats, 10.1ms\n", + "image 330/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_171436.jpg: 640x480 1 cat, 1 cup, 2 bowls, 1 book, 9.0ms\n", + "image 331/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_171438.jpg: 640x480 1 cat, 2 bowls, 12.0ms\n", + "image 332/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_171443.jpg: 640x480 1 cat, 2 bowls, 12.0ms\n", + "image 333/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_173348.jpg: 640x480 1 cat, 12.0ms\n", + "image 334/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_173355.jpg: 640x480 1 cat, 12.0ms\n", + "image 335/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_173426.jpg: 480x640 1 cat, 14.0ms\n", + "image 336/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211309.jpg: 640x480 2 cats, 17.0ms\n", + "image 337/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211312.jpg: 640x480 1 cat, 14.0ms\n", + "image 338/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211313.jpg: 640x480 1 cat, 24.0ms\n", + "image 339/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211320.jpg: 640x480 1 cat, 23.0ms\n", + "image 340/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211321.jpg: 640x480 1 cat, 29.0ms\n", + "image 341/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211322.jpg: 640x480 1 cat, 26.0ms\n", + "image 342/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211330.jpg: 640x480 2 cats, 3 chairs, 30.5ms\n", + "image 343/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211333.jpg: 640x480 1 cat, 1 chair, 36.1ms\n", + "image 344/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240820_144924.jpg: 640x480 1 bench, 1 cat, 24.0ms\n", + "image 345/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240820_145200.jpg: 640x480 1 bench, 1 cat, 25.0ms\n", + "image 346/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_144759.jpg: 640x480 1 cat, 2 chairs, 1 book, 33.5ms\n", + "image 347/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_144801.jpg: 640x480 1 cat, 1 book, 120.4ms\n", + "image 348/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_144802.jpg: 640x480 (no detections), 48.8ms\n", + "image 349/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_144806.jpg: 640x480 1 cat, 1 dog, 1 tie, 19.0ms\n", + "image 350/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_144808.jpg: 640x480 1 cat, 1 dog, 19.7ms\n", + "image 351/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_144856.jpg: 640x480 1 person, 19.0ms\n", + "image 352/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_144935.jpg: 640x480 2 cats, 1 dog, 1 chair, 39.7ms\n", + "image 353/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145212.jpg: 640x480 2 persons, 3 dogs, 58.2ms\n", + "image 354/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145214.jpg: 640x480 2 persons, 2 cats, 1 chair, 57.4ms\n", + "image 355/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145834.jpg: 640x480 2 cats, 1 dog, 37.0ms\n", + "image 356/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145836.jpg: 640x480 2 cats, 1 chair, 43.5ms\n", + "image 357/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145837.jpg: 640x480 2 cats, 1 dog, 48.5ms\n", + "image 358/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145839.jpg: 640x480 2 cats, 1 dog, 63.5ms\n", + "image 359/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145844.jpg: 640x480 2 cats, 1 dog, 8.0ms\n", + "image 360/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145846.jpg: 640x480 1 person, 1 cat, 1 dog, 1 suitcase, 10.0ms\n", + "image 361/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145849.jpg: 640x480 2 cats, 1 chair, 11.0ms\n", + "image 362/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_150802.jpg: 640x480 1 teddy bear, 12.0ms\n", + "image 363/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_150805.jpg: 640x480 1 teddy bear, 10.0ms\n", + "image 364/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_150807.jpg: 480x640 1 cat, 10.0ms\n", + "image 365/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_150810.jpg: 480x640 1 person, 2 cats, 16.0ms\n", + "image 366/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_150813.jpg: 480x640 1 person, 1 cat, 1 couch, 12.0ms\n", + "image 367/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_150852.jpg: 640x480 1 cat, 13.0ms\n", + "image 368/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_152201.jpg: 640x480 2 cats, 1 dog, 10.0ms\n", + "image 369/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_152205.jpg: 640x480 2 cats, 12.6ms\n", + "image 370/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_152211.jpg: 640x480 2 cats, 12.5ms\n", + "image 371/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_152212.jpg: 640x480 1 cat, 1 dog, 10.2ms\n", + "image 372/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240827_224300.jpg: 640x480 1 cat, 1 couch, 9.0ms\n", + "image 373/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240827_224303.jpg: 640x480 1 cat, 31.1ms\n", + "image 374/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240828_102222.jpg: 640x480 1 cat, 1 chair, 28.0ms\n", + "image 375/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240828_102229.jpg: 640x480 1 cat, 15.0ms\n", + "image 376/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240903_211802.jpg: 640x480 1 cat, 40.0ms\n", + "image 377/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240903_211803.jpg: 640x480 1 cat, 26.0ms\n", + "image 378/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240903_211811.jpg: 640x480 1 cat, 16.0ms\n", + "image 379/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240903_211818.jpg: 640x480 1 cat, 1 dog, 1 couch, 1 bed, 16.0ms\n", + "image 380/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240903_211821.jpg: 640x480 1 person, 1 cat, 1 frisbee, 1 chair, 1 bed, 26.0ms\n", + "image 381/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240907_115059.jpg: 480x640 1 cat, 1 couch, 1 bed, 17.0ms\n", + "image 382/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240907_115105.jpg: 480x640 1 cat, 2 beds, 12.0ms\n", + "image 383/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240907_115118.jpg: 480x640 1 cat, 1 bed, 14.0ms\n", + "image 384/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240908_190713.jpg: 640x480 1 cat, 2 beds, 32.0ms\n", + "image 385/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240908_190829.jpg: 640x480 1 cat, 1 bed, 42.2ms\n", + "image 386/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240908_194734.jpg: 640x480 (no detections), 27.5ms\n", + "image 387/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240908_194737.jpg: 640x480 2 cats, 60.6ms\n", + "image 388/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240908_194739.jpg: 640x480 2 cats, 34.0ms\n", + "image 389/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240908_194752.jpg: 640x480 1 cat, 1 bed, 37.4ms\n", + "image 390/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240908_194753.jpg: 640x480 1 handbag, 1 bed, 67.5ms\n", + "image 391/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240909_000642.jpg: 480x640 1 cat, 1 chair, 1 bed, 55.0ms\n", + "image 392/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240909_000646.jpg: 480x640 2 cats, 29.8ms\n", + "image 393/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124611.jpg: 640x480 1 cat, 1 bed, 36.0ms\n", + "image 394/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124612.jpg: 640x480 1 cat, 1 dog, 1 bed, 84.5ms\n", + "image 395/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124619.jpg: 640x480 1 person, 1 bed, 1 teddy bear, 46.7ms\n", + "image 396/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124621.jpg: 640x480 1 person, 1 bed, 1 teddy bear, 59.8ms\n", + "image 397/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124624.jpg: 640x480 1 dog, 70.0ms\n", + "image 398/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124720.jpg: 640x480 1 bench, 1 cat, 1 bed, 151.0ms\n", + "image 399/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124723.jpg: 640x480 1 cat, 50.2ms\n", + "image 400/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124734.jpg: 640x480 1 cat, 2 beds, 34.0ms\n", + "image 401/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124738.jpg: 640x480 1 cat, 1 bed, 42.5ms\n", + "image 402/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124741.jpg: 640x480 1 cat, 1 couch, 1 bed, 50.3ms\n", + "image 403/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091314.jpg: 640x480 1 cat, 198.3ms\n", + "image 404/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091319.jpg: 640x480 1 cat, 132.7ms\n", + "image 405/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091320.jpg: 640x480 1 cat, 55.0ms\n", + "image 406/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091321.jpg: 640x480 (no detections), 63.7ms\n", + "image 407/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091322.jpg: 640x480 1 cat, 79.4ms\n", + "image 408/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091323.jpg: 640x480 1 cat, 62.9ms\n", + "image 409/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091329.jpg: 480x640 1 cat, 49.0ms\n", + "image 410/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091845.jpg: 640x480 1 cat, 73.8ms\n", + "image 411/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091846.jpg: 640x480 1 cat, 59.0ms\n", + "image 412/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091848.jpg: 640x480 1 bird, 1 cat, 80.0ms\n", + "image 413/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091850.jpg: 640x480 1 cat, 43.0ms\n", + "image 414/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091852.jpg: 640x480 1 bird, 1 cat, 61.4ms\n", + "image 415/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091859.jpg: 640x480 1 cat, 42.9ms\n", + "image 416/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091902.jpg: 640x480 1 cat, 54.2ms\n", + "image 417/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091905.jpg: 640x480 1 cat, 52.9ms\n", + "image 418/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_193740.jpg: 640x480 1 cat, 11.0ms\n", + "image 419/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_193742.jpg: 640x480 1 cat, 11.0ms\n", + "image 420/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_174138.jpg: 640x480 1 chair, 1 bed, 1 mouse, 10.0ms\n", + "image 421/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_174140.jpg: 640x480 2 surfboards, 11.8ms\n", + "image 422/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_174204.jpg: 640x480 1 cat, 1 toilet, 11.0ms\n", + "image 423/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_174614.jpg: 640x480 2 cats, 1 laptop, 10.0ms\n", + "image 424/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_174616.jpg: 640x480 1 cat, 10.9ms\n", + "image 425/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_174617.jpg: 640x480 1 person, 17.0ms\n", + "image 426/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_174620.jpg: 640x480 1 person, 19.2ms\n", + "image 427/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_174622.jpg: 640x480 1 person, 8.0ms\n", + "image 428/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_174636.jpg: 640x480 1 person, 1 cat, 20.0ms\n", + "image 429/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_215106.jpg: 640x480 1 cat, 1 bed, 14.0ms\n", + "image 430/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_215113.jpg: 640x480 1 person, 1 cat, 1 bottle, 1 chair, 1 bed, 1 tv, 8.0ms\n", + "image 431/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_215119.jpg: 640x480 1 cat, 1 bottle, 1 bed, 1 tv, 13.6ms\n", + "image 432/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240920_192026.jpg: 640x480 1 cat, 13.0ms\n", + "image 433/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240924_111824.jpg: 480x640 1 cat, 16.8ms\n", + "image 434/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240924_111829.jpg: 480x640 1 cat, 15.0ms\n", + "image 435/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240924_111831.jpg: 480x640 1 cat, 1 chair, 10.0ms\n", + "image 436/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162434.jpg: 640x480 2 cats, 1 potted plant, 23.5ms\n", + "image 437/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162437.jpg: 640x480 1 cat, 1 potted plant, 23.0ms\n", + "image 438/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162442.jpg: 640x480 1 person, 1 cat, 27.0ms\n", + "image 439/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162443.jpg: 640x480 1 person, 1 cat, 30.0ms\n", + "image 440/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162445.jpg: 640x480 1 person, 1 cat, 27.0ms\n", + "image 441/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162452.jpg: 640x480 1 person, 1 cat, 104.3ms\n", + "image 442/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162458.jpg: 640x480 1 cat, 2 chairs, 2 potted plants, 14.0ms\n", + "image 443/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162500.jpg: 640x480 1 cat, 10.0ms\n", + "image 444/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162503.jpg: 640x480 1 cat, 1 chair, 2 potted plants, 15.0ms\n", + "image 445/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240929_100748.jpg: 480x640 2 persons, 1 cat, 16.0ms\n", + "image 446/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240929_101009.jpg: 640x480 1 cat, 13.0ms\n", + "image 447/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240929_101010.jpg: 640x480 1 dog, 16.0ms\n", + "image 448/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240929_101012.jpg: 640x480 1 umbrella, 17.0ms\n", + "image 449/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240929_101014.jpg: 640x480 1 cat, 13.3ms\n", + "image 450/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240929_101016.jpg: 640x480 1 cat, 19.0ms\n", + "image 451/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240929_184523.jpg: 480x640 1 cat, 22.0ms\n", + "image 452/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240930_151252.jpg: 640x480 3 persons, 1 dog, 1 teddy bear, 11.0ms\n", + "image 453/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240930_151259.jpg: 640x480 1 cat, 11.0ms\n", + "image 454/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241002_212916.jpg: 640x480 2 cats, 12.0ms\n", + "image 455/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241002_212925.jpg: 640x480 2 cats, 1 handbag, 19.0ms\n", + "image 456/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241002_212949.jpg: 640x480 2 cats, 12.0ms\n", + "image 457/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241004_112619.jpg: 640x480 1 cat, 1 bowl, 1 potted plant, 11.0ms\n", + "image 458/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241004_112626.jpg: 640x480 1 cat, 1 bowl, 14.0ms\n", + "image 459/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241008_094705.jpg: 640x480 1 cat, 1 bowl, 30.0ms\n", + "image 460/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241008_094939.jpg: 640x480 1 cat, 1 dog, 1 couch, 30.5ms\n", + "image 461/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241008_094940.jpg: 640x480 2 cats, 20.3ms\n", + "image 462/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241009_121555.jpg: 640x480 2 beds, 37.0ms\n", + "image 463/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241009_121558.jpg: 640x480 1 cat, 1 suitcase, 62.5ms\n", + "image 464/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241009_121601.jpg: 640x480 2 persons, 61.0ms\n", + "image 465/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241013_191519.jpg: 640x480 1 cat, 45.0ms\n", + "image 466/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241013_191520.jpg: 640x480 1 cat, 33.0ms\n", + "image 467/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241013_191523.jpg: 640x480 1 cat, 64.2ms\n", + "image 468/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241013_191525.jpg: 640x480 1 cat, 30.0ms\n", + "image 469/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241013_191527.jpg: 640x480 1 cat, 1 sink, 28.0ms\n", + "image 470/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241013_191529.jpg: 640x480 1 cat, 52.8ms\n", + "image 471/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241017_132210.jpg: 640x480 1 cat, 102.6ms\n", + "image 472/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241017_132216.jpg: 640x480 1 cat, 10.0ms\n", + "image 473/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241017_132218.jpg: 640x480 1 dog, 12.0ms\n", + "image 474/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241017_184948.jpg: 640x480 1 cat, 12.0ms\n", + "image 475/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241017_184949.jpg: 640x480 1 cat, 1 bowl, 12.0ms\n", + "image 476/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241022_023307.jpg: 640x480 1 cat, 1 bottle, 12.7ms\n", + "image 477/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241024_134452.jpg: 640x480 1 cat, 1 bed, 11.0ms\n", + "image 478/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241101_145241.jpg: 640x480 1 cat, 1 bed, 9.0ms\n", + "image 479/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241115_195434.jpg: 640x480 1 person, 1 cat, 1 chair, 11.0ms\n", + "image 480/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241115_195439.jpg: 640x480 1 person, 1 cat, 1 chair, 11.0ms\n", + "image 481/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241115_200624.jpg: 640x480 2 persons, 2 cats, 1 bowl, 1 bed, 13.0ms\n", + "image 482/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241115_200626.jpg: 640x480 1 person, 1 cat, 12.0ms\n", + "image 483/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241124_214430.jpg: 640x480 1 bottle, 1 bed, 11.0ms\n", + "image 484/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241124_220257.jpg: 640x480 1 cat, 1 bowl, 1 bed, 13.0ms\n", + "image 485/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241124_220259.jpg: 640x480 1 cat, 1 bed, 1 dining table, 15.4ms\n", + "image 486/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241129_085724.jpg: 640x480 1 bench, 22.0ms\n", + "image 487/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241206_164037.jpg: 640x480 1 person, 1 cat, 17.0ms\n", + "image 488/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241206_164040.jpg: 640x480 2 cats, 16.0ms\n", + "image 489/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241217_102418.jpg: 640x480 1 cat, 1 bowl, 17.1ms\n", + "image 490/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241222_132045.jpg: 640x480 1 cat, 1 bed, 22.0ms\n", + "image 491/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241222_132051.jpg: 640x480 2 cats, 20.0ms\n", + "image 492/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241222_132058.jpg: 640x480 2 cats, 24.0ms\n", + "image 493/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241222_132101.jpg: 480x640 2 cats, 20.0ms\n", + "image 494/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241222_132106.jpg: 480x640 1 cat, 27.5ms\n", + "image 495/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241224_180740.jpg: 640x480 (no detections), 30.0ms\n", + "image 496/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_130054.jpg: 640x480 1 cat, 1 bowl, 1 couch, 1 bed, 53.0ms\n", + "image 497/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_134500.jpg: 640x480 1 cat, 1 toilet, 45.7ms\n", + "image 498/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_134517.jpg: 640x480 1 bear, 1 toilet, 34.0ms\n", + "image 499/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_134521.jpg: 640x480 1 person, 56.5ms\n", + "image 500/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_134625.jpg: 640x480 (no detections), 61.1ms\n", + "image 501/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_134627.jpg: 640x480 1 cat, 48.0ms\n", + "image 502/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_134634.jpg: 640x480 1 dog, 33.0ms\n", + "image 503/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_134635.jpg: 640x480 2 teddy bears, 32.0ms\n", + "image 504/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135201.jpg: 640x480 1 cat, 121.9ms\n", + "image 505/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135214.jpg: 640x480 (no detections), 44.0ms\n", + "image 506/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135215.jpg: 640x480 1 dog, 1 chair, 24.0ms\n", + "image 507/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135219.jpg: 640x480 1 person, 1 bicycle, 1 cat, 1 dog, 26.0ms\n", + "image 508/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135343(0).jpg: 640x480 1 cat, 3 chairs, 29.0ms\n", + "image 509/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135343.jpg: 640x480 2 cats, 1 chair, 25.0ms\n", + "image 510/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135345.jpg: 640x480 1 cat, 1 chair, 21.8ms\n", + "image 511/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135347.jpg: 640x480 2 cats, 1 dog, 20.9ms\n", + "image 512/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135352.jpg: 640x480 1 cat, 28.0ms\n", + "image 513/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135354.jpg: 640x480 1 cat, 40.5ms\n", + "image 514/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135707.jpg: 640x480 3 chairs, 1 bed, 27.0ms\n", + "image 515/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135708.jpg: 640x480 2 chairs, 29.0ms\n", + "image 516/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135710.jpg: 640x480 1 cat, 2 chairs, 27.0ms\n", + "image 517/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135712.jpg: 640x480 1 cat, 1 chair, 29.0ms\n", + "image 518/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_140923.jpg: 640x480 (no detections), 30.5ms\n", + "image 519/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_140924.jpg: 640x480 2 persons, 27.0ms\n", + "image 520/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241227_150819.jpg: 640x480 1 person, 1 cat, 1 tv, 50.2ms\n", + "image 521/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241227_150826.jpg: 640x480 1 person, 1 cat, 1 chair, 1 tv, 1 laptop, 40.0ms\n", + "image 522/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250105_143721.jpg: 640x480 2 cats, 2 chairs, 31.0ms\n", + "image 523/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250105_143723.jpg: 640x480 1 cat, 43.8ms\n", + "image 524/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250105_143727.jpg: 640x480 2 cats, 30.0ms\n", + "image 525/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250112_203850.jpg: 640x480 2 cats, 1 sports ball, 39.4ms\n", + "image 526/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250112_203857.jpg: 640x480 2 persons, 1 cat, 27.0ms\n", + "image 527/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250112_203858.jpg: 640x480 1 cat, 1 teddy bear, 27.1ms\n", + "image 528/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250112_203900.jpg: 640x480 1 dog, 1 book, 34.0ms\n", + "image 529/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250112_203903.jpg: 640x480 1 sheep, 1 sports ball, 26.0ms\n", + "image 530/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174816.jpg: 640x480 1 person, 1 cat, 30.0ms\n", + "image 531/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174818.jpg: 640x480 (no detections), 25.9ms\n", + "image 532/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174833.jpg: 640x480 1 person, 1 teddy bear, 33.0ms\n", + "image 533/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174904.jpg: 640x480 1 person, 1 chair, 1 tv, 1 clock, 1 teddy bear, 31.0ms\n", + "image 534/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174905.jpg: 640x480 1 person, 1 chair, 1 tv, 2 teddy bears, 31.0ms\n", + "image 535/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174908.jpg: 640x480 1 person, 1 tv, 1 teddy bear, 29.1ms\n", + "image 536/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174912.jpg: 640x480 1 person, 2 chairs, 1 dining table, 1 teddy bear, 27.0ms\n", + "image 537/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174913.jpg: 640x480 1 person, 1 chair, 1 teddy bear, 31.0ms\n", + "image 538/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174915.jpg: 640x480 1 person, 2 chairs, 1 teddy bear, 27.0ms\n", + "image 539/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174920.jpg: 640x480 1 person, 3 chairs, 1 tv, 26.0ms\n", + "image 540/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174949(0).jpg: 640x480 1 person, 1 couch, 1 bed, 33.0ms\n", + "image 541/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174949.jpg: 640x480 1 person, 1 couch, 1 bed, 1 book, 27.0ms\n", + "image 542/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_175124.jpg: 640x480 (no detections), 28.0ms\n", + "image 543/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250117_172955.jpg: 640x480 1 person, 1 cat, 1 bed, 29.0ms\n", + "image 544/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250120_225956.jpg: 640x480 1 cat, 26.9ms\n", + "image 545/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250121_190039.jpg: 640x480 1 cat, 1 dog, 28.3ms\n", + "image 546/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250121_190043.jpg: 640x480 2 cats, 1 chair, 32.0ms\n", + "image 547/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250121_190046.jpg: 640x480 1 dog, 1 chair, 3 books, 30.1ms\n", + "image 548/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250122_142944.jpg: 640x480 3 cats, 1 bed, 30.0ms\n", + "image 549/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250122_142946.jpg: 640x480 4 cats, 1 bed, 33.0ms\n", + "image 550/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250122_142948.jpg: 640x480 3 cats, 2 beds, 25.3ms\n", + "image 551/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250122_142949.jpg: 640x480 2 cats, 1 bed, 31.0ms\n", + "image 552/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250122_142953.jpg: 640x480 2 cats, 1 potted plant, 1 bed, 27.2ms\n", + "image 553/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250122_142958.jpg: 640x480 1 cat, 2 beds, 29.5ms\n", + "image 554/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250122_191929.jpg: 640x480 1 dog, 2 books, 44.6ms\n", + "image 555/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\IMG-20240730-WA0005.jpg: 640x480 2 persons, 1 couch, 32.0ms\n", + "image 556/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\IMG_20240318_231934_252.webp: 640x384 1 cat, 22.0ms\n", + "image 557/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\IMG_20241207_211456_238.jpg: 640x480 1 person, 1 cat, 1 bed, 34.0ms\n", + "image 558/558 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\IMG_20241229_221404_122.jpg: 640x512 1 person, 2 dogs, 29.7ms\n", + "Speed: 4.4ms preprocess, 31.3ms inference, 4.4ms postprocess per image at shape (1, 3, 640, 512)\n" + ] + } + ], + "source": [ + "results = model.predict(source=images_folder, save=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saved cropped cat image: output/cropped/cat_1.jpg\n", + "Saved cropped cat image: output/cropped/cat_2.jpg\n", + "Saved cropped cat image: output/cropped/cat_3.jpg\n", + "Saved cropped cat image: output/cropped/cat_4.jpg\n", + "Saved cropped cat image: output/cropped/cat_5.jpg\n", + "Saved cropped cat image: output/cropped/cat_6.jpg\n", + "Saved cropped cat image: output/cropped/cat_7.jpg\n", + "Saved cropped cat image: output/cropped/cat_8.jpg\n", + "Saved cropped cat image: output/cropped/cat_9.jpg\n", + "Saved cropped cat image: output/cropped/cat_10.jpg\n", + "Saved cropped cat image: output/cropped/cat_11.jpg\n", + "Saved cropped cat image: output/cropped/cat_12.jpg\n", + "Saved cropped cat image: output/cropped/cat_13.jpg\n", + "Saved cropped cat image: output/cropped/cat_14.jpg\n", + "Saved cropped cat image: output/cropped/cat_15.jpg\n", + "Saved cropped cat image: output/cropped/cat_16.jpg\n", + "Saved cropped cat image: output/cropped/cat_17.jpg\n", + "Saved cropped cat image: output/cropped/cat_18.jpg\n", + "Saved cropped cat image: output/cropped/cat_19.jpg\n", + "Saved cropped cat image: output/cropped/cat_20.jpg\n", + "Saved cropped cat image: output/cropped/cat_21.jpg\n", + "Saved cropped cat image: output/cropped/cat_22.jpg\n", + "Saved cropped cat image: output/cropped/cat_23.jpg\n", + "Saved cropped cat image: output/cropped/cat_24.jpg\n", + "Saved cropped cat image: output/cropped/cat_25.jpg\n", + "Saved cropped cat image: output/cropped/cat_26.jpg\n", + "Saved cropped cat image: output/cropped/cat_27.jpg\n", + "Saved cropped cat image: output/cropped/cat_28.jpg\n", + "Saved cropped cat image: output/cropped/cat_29.jpg\n", + "Saved cropped cat image: output/cropped/cat_30.jpg\n", + "Saved cropped cat image: output/cropped/cat_31.jpg\n", + "Saved cropped cat image: output/cropped/cat_32.jpg\n", + "Saved cropped cat image: output/cropped/cat_33.jpg\n", + "Saved cropped cat image: output/cropped/cat_34.jpg\n", + "Saved cropped cat image: output/cropped/cat_35.jpg\n", + "Saved cropped cat image: output/cropped/cat_36.jpg\n", + "Saved cropped cat image: output/cropped/cat_37.jpg\n", + "Saved cropped cat image: output/cropped/cat_38.jpg\n", + "Saved cropped cat image: output/cropped/cat_39.jpg\n", + "Saved cropped cat image: output/cropped/cat_40.jpg\n", + "Saved cropped cat image: output/cropped/cat_41.jpg\n", + "Saved cropped cat image: output/cropped/cat_42.jpg\n", + "Saved cropped cat image: output/cropped/cat_43.jpg\n", + "Saved cropped cat image: output/cropped/cat_44.jpg\n", + "Saved cropped cat image: output/cropped/cat_45.jpg\n", + "Saved cropped cat image: output/cropped/cat_46.jpg\n", + "Saved cropped cat image: output/cropped/cat_47.jpg\n", + "Saved cropped cat image: output/cropped/cat_48.jpg\n", + "Saved cropped cat image: output/cropped/cat_49.jpg\n", + "Saved cropped cat image: output/cropped/cat_50.jpg\n", + "Saved cropped cat image: output/cropped/cat_51.jpg\n", + "Saved cropped cat image: output/cropped/cat_52.jpg\n", + "Saved cropped cat image: output/cropped/cat_53.jpg\n", + "Saved cropped cat image: output/cropped/cat_54.jpg\n", + "Saved cropped cat image: output/cropped/cat_55.jpg\n", + "Saved cropped cat image: output/cropped/cat_56.jpg\n", + "Saved cropped cat image: output/cropped/cat_57.jpg\n", + "Saved cropped cat image: output/cropped/cat_58.jpg\n", + "Saved cropped cat image: output/cropped/cat_59.jpg\n", + "Saved cropped cat image: output/cropped/cat_60.jpg\n", + "Saved cropped cat image: output/cropped/cat_61.jpg\n", + "Saved cropped cat image: output/cropped/cat_62.jpg\n", + "Saved cropped cat image: output/cropped/cat_63.jpg\n", + "Saved cropped cat image: output/cropped/cat_64.jpg\n", + "Saved cropped cat image: output/cropped/cat_65.jpg\n", + "Saved cropped cat image: output/cropped/cat_66.jpg\n", + "Saved cropped cat image: output/cropped/cat_67.jpg\n", + "Saved cropped cat image: output/cropped/cat_68.jpg\n", + "Saved cropped cat image: output/cropped/cat_69.jpg\n", + "Saved cropped cat image: output/cropped/cat_70.jpg\n", + "Saved cropped cat image: output/cropped/cat_71.jpg\n", + "Saved cropped cat image: output/cropped/cat_72.jpg\n", + "Saved cropped cat image: output/cropped/cat_73.jpg\n", + "Saved cropped cat image: output/cropped/cat_74.jpg\n", + "Saved cropped cat image: output/cropped/cat_75.jpg\n", + "Saved cropped cat image: output/cropped/cat_76.jpg\n", + "Saved cropped cat image: output/cropped/cat_77.jpg\n", + "Saved cropped cat image: output/cropped/cat_78.jpg\n", + "Saved cropped cat image: output/cropped/cat_79.jpg\n", + "Saved cropped cat image: output/cropped/cat_80.jpg\n", + "Saved cropped cat image: output/cropped/cat_81.jpg\n", + "Saved cropped cat image: output/cropped/cat_82.jpg\n", + "Saved cropped cat image: output/cropped/cat_83.jpg\n", + "Saved cropped cat image: output/cropped/cat_84.jpg\n", + "Saved cropped cat image: output/cropped/cat_85.jpg\n", + "Saved cropped cat image: output/cropped/cat_86.jpg\n", + "Saved cropped cat image: output/cropped/cat_87.jpg\n", + "Saved cropped cat image: output/cropped/cat_88.jpg\n", + "Saved cropped cat image: output/cropped/cat_89.jpg\n", + "Saved cropped cat image: output/cropped/cat_90.jpg\n", + "Saved cropped cat image: output/cropped/cat_91.jpg\n", + "Saved cropped cat image: output/cropped/cat_92.jpg\n", + "Saved cropped cat image: output/cropped/cat_93.jpg\n", + "Saved cropped cat image: output/cropped/cat_94.jpg\n", + "Saved cropped cat image: output/cropped/cat_95.jpg\n", + "Saved cropped cat image: output/cropped/cat_96.jpg\n", + "Saved cropped cat image: output/cropped/cat_97.jpg\n", + "Saved cropped cat image: output/cropped/cat_98.jpg\n", + "Saved cropped cat image: output/cropped/cat_99.jpg\n", + "Saved cropped cat image: output/cropped/cat_100.jpg\n", + "Saved cropped cat image: output/cropped/cat_101.jpg\n", + "Saved cropped cat image: output/cropped/cat_102.jpg\n", + "Saved cropped cat image: output/cropped/cat_103.jpg\n", + "Saved cropped cat image: output/cropped/cat_104.jpg\n", + "Saved cropped cat image: output/cropped/cat_105.jpg\n", + "Saved cropped cat image: output/cropped/cat_106.jpg\n", + "Saved cropped cat image: output/cropped/cat_107.jpg\n", + "Saved cropped cat image: output/cropped/cat_108.jpg\n", + "Saved cropped cat image: output/cropped/cat_109.jpg\n", + "Saved cropped cat image: output/cropped/cat_110.jpg\n", + "Saved cropped cat image: output/cropped/cat_111.jpg\n", + "Saved cropped cat image: output/cropped/cat_112.jpg\n", + "Saved cropped cat image: output/cropped/cat_113.jpg\n", + "Saved cropped cat image: output/cropped/cat_114.jpg\n", + "Saved cropped cat image: output/cropped/cat_115.jpg\n", + "Saved cropped cat image: output/cropped/cat_116.jpg\n", + "Saved cropped cat image: output/cropped/cat_117.jpg\n", + "Saved cropped cat image: output/cropped/cat_118.jpg\n", + "Saved cropped cat image: output/cropped/cat_119.jpg\n", + "Saved cropped cat image: output/cropped/cat_120.jpg\n", + "Saved cropped cat image: output/cropped/cat_121.jpg\n", + "Saved cropped cat image: output/cropped/cat_122.jpg\n", + "Saved cropped cat image: output/cropped/cat_123.jpg\n", + "Saved cropped cat image: output/cropped/cat_124.jpg\n", + "Saved cropped cat image: output/cropped/cat_125.jpg\n", + "Saved cropped cat image: output/cropped/cat_126.jpg\n", + "Saved cropped cat image: output/cropped/cat_127.jpg\n", + "Saved cropped cat image: output/cropped/cat_128.jpg\n", + "Saved cropped cat image: output/cropped/cat_129.jpg\n", + "Saved cropped cat image: output/cropped/cat_130.jpg\n", + "Saved cropped cat image: output/cropped/cat_131.jpg\n", + "Saved cropped cat image: output/cropped/cat_132.jpg\n", + "Saved cropped cat image: output/cropped/cat_133.jpg\n", + "Saved cropped cat image: output/cropped/cat_134.jpg\n", + "Saved cropped cat image: output/cropped/cat_135.jpg\n", + "Saved cropped cat image: output/cropped/cat_136.jpg\n", + "Saved cropped cat image: output/cropped/cat_137.jpg\n", + "Saved cropped cat image: output/cropped/cat_138.jpg\n", + "Saved cropped cat image: output/cropped/cat_139.jpg\n", + "Saved cropped cat image: output/cropped/cat_140.jpg\n", + "Saved cropped cat image: output/cropped/cat_141.jpg\n", + "Saved cropped cat image: output/cropped/cat_142.jpg\n", + "Saved cropped cat image: output/cropped/cat_143.jpg\n", + "Saved cropped cat image: output/cropped/cat_144.jpg\n", + "Saved cropped cat image: output/cropped/cat_145.jpg\n", + "Saved cropped cat image: output/cropped/cat_146.jpg\n", + "Saved cropped cat image: output/cropped/cat_147.jpg\n", + "Saved cropped cat image: output/cropped/cat_148.jpg\n", + "Saved cropped cat image: output/cropped/cat_149.jpg\n", + "Saved cropped cat image: output/cropped/cat_150.jpg\n", + "Saved cropped cat image: output/cropped/cat_151.jpg\n", + "Saved cropped cat image: output/cropped/cat_152.jpg\n", + "Saved cropped cat image: output/cropped/cat_153.jpg\n", + "Saved cropped cat image: output/cropped/cat_154.jpg\n", + "Saved cropped cat image: output/cropped/cat_155.jpg\n", + "Saved cropped cat image: output/cropped/cat_156.jpg\n", + "Saved cropped cat image: output/cropped/cat_157.jpg\n", + "Saved cropped cat image: output/cropped/cat_158.jpg\n", + "Saved cropped cat image: output/cropped/cat_159.jpg\n", + "Saved cropped cat image: output/cropped/cat_160.jpg\n", + "Saved cropped cat image: output/cropped/cat_161.jpg\n", + "Saved cropped cat image: output/cropped/cat_162.jpg\n", + "Saved cropped cat image: output/cropped/cat_163.jpg\n", + "Saved cropped cat image: output/cropped/cat_164.jpg\n", + "Saved cropped cat image: output/cropped/cat_165.jpg\n", + "Saved cropped cat image: output/cropped/cat_166.jpg\n", + "Saved cropped cat image: output/cropped/cat_167.jpg\n", + "Saved cropped cat image: output/cropped/cat_168.jpg\n", + "Saved cropped cat image: output/cropped/cat_169.jpg\n", + "Saved cropped cat image: output/cropped/cat_170.jpg\n", + "Saved cropped cat image: output/cropped/cat_171.jpg\n", + "Saved cropped cat image: output/cropped/cat_172.jpg\n", + "Saved cropped cat image: output/cropped/cat_173.jpg\n", + "Saved cropped cat image: output/cropped/cat_174.jpg\n", + "Saved cropped cat image: output/cropped/cat_175.jpg\n", + "Saved cropped cat image: output/cropped/cat_176.jpg\n", + "Saved cropped cat image: output/cropped/cat_177.jpg\n", + "Saved cropped cat image: output/cropped/cat_178.jpg\n", + "Saved cropped cat image: output/cropped/cat_179.jpg\n", + "Saved cropped cat image: output/cropped/cat_180.jpg\n", + "Saved cropped cat image: output/cropped/cat_181.jpg\n", + "Saved cropped cat image: output/cropped/cat_182.jpg\n", + "Saved cropped cat image: output/cropped/cat_183.jpg\n", + "Saved cropped cat image: output/cropped/cat_184.jpg\n", + "Saved cropped cat image: output/cropped/cat_185.jpg\n", + "Saved cropped cat image: output/cropped/cat_186.jpg\n", + "Saved cropped cat image: output/cropped/cat_187.jpg\n", + "Saved cropped cat image: output/cropped/cat_188.jpg\n", + "Saved cropped cat image: output/cropped/cat_189.jpg\n", + "Saved cropped cat image: output/cropped/cat_190.jpg\n", + "Saved cropped cat image: output/cropped/cat_191.jpg\n", + "Saved cropped cat image: output/cropped/cat_192.jpg\n", + "Saved cropped cat image: output/cropped/cat_193.jpg\n", + "Saved cropped cat image: output/cropped/cat_194.jpg\n", + "Saved cropped cat image: output/cropped/cat_195.jpg\n", + "Saved cropped cat image: output/cropped/cat_196.jpg\n", + "Saved cropped cat image: output/cropped/cat_197.jpg\n", + "Saved cropped cat image: output/cropped/cat_198.jpg\n", + "Saved cropped cat image: output/cropped/cat_199.jpg\n", + "Saved cropped cat image: output/cropped/cat_200.jpg\n", + "Saved cropped cat image: output/cropped/cat_201.jpg\n", + "Saved cropped cat image: output/cropped/cat_202.jpg\n", + "Saved cropped cat image: output/cropped/cat_203.jpg\n", + "Saved cropped cat image: output/cropped/cat_204.jpg\n", + "Saved cropped cat image: output/cropped/cat_205.jpg\n", + "Saved cropped cat image: output/cropped/cat_206.jpg\n", + "Saved cropped cat image: output/cropped/cat_207.jpg\n", + "Saved cropped cat image: output/cropped/cat_208.jpg\n", + "Saved cropped cat image: output/cropped/cat_209.jpg\n", + "Saved cropped cat image: output/cropped/cat_210.jpg\n", + "Saved cropped cat image: output/cropped/cat_211.jpg\n", + "Saved cropped cat image: output/cropped/cat_212.jpg\n", + "Saved cropped cat image: output/cropped/cat_213.jpg\n", + "Saved cropped cat image: output/cropped/cat_214.jpg\n", + "Saved cropped cat image: output/cropped/cat_215.jpg\n", + "Saved cropped cat image: output/cropped/cat_216.jpg\n", + "Saved cropped cat image: output/cropped/cat_217.jpg\n", + "Saved cropped cat image: output/cropped/cat_218.jpg\n", + "Saved cropped cat image: output/cropped/cat_219.jpg\n", + "Saved cropped cat image: output/cropped/cat_220.jpg\n", + "Saved cropped cat image: output/cropped/cat_221.jpg\n", + "Saved cropped cat image: output/cropped/cat_222.jpg\n", + "Saved cropped cat image: output/cropped/cat_223.jpg\n", + "Saved cropped cat image: output/cropped/cat_224.jpg\n", + "Saved cropped cat image: output/cropped/cat_225.jpg\n", + "Saved cropped cat image: output/cropped/cat_226.jpg\n", + "Saved cropped cat image: output/cropped/cat_227.jpg\n", + "Saved cropped cat image: output/cropped/cat_228.jpg\n", + "Saved cropped cat image: output/cropped/cat_229.jpg\n", + "Saved cropped cat image: output/cropped/cat_230.jpg\n", + "Saved cropped cat image: output/cropped/cat_231.jpg\n", + "Saved cropped cat image: output/cropped/cat_232.jpg\n", + "Saved cropped cat image: output/cropped/cat_233.jpg\n", + "Saved cropped cat image: output/cropped/cat_234.jpg\n", + "Saved cropped cat image: output/cropped/cat_235.jpg\n", + "Saved cropped cat image: output/cropped/cat_236.jpg\n", + "Saved cropped cat image: output/cropped/cat_237.jpg\n", + "Saved cropped cat image: output/cropped/cat_238.jpg\n", + "Saved cropped cat image: output/cropped/cat_239.jpg\n", + "Saved cropped cat image: output/cropped/cat_240.jpg\n", + "Saved cropped cat image: output/cropped/cat_241.jpg\n", + "Saved cropped cat image: output/cropped/cat_242.jpg\n", + "Saved cropped cat image: output/cropped/cat_243.jpg\n", + "Saved cropped cat image: output/cropped/cat_244.jpg\n", + "Saved cropped cat image: output/cropped/cat_245.jpg\n", + "Saved cropped cat image: output/cropped/cat_246.jpg\n", + "Saved cropped cat image: output/cropped/cat_247.jpg\n", + "Saved cropped cat image: output/cropped/cat_248.jpg\n", + "Saved cropped cat image: output/cropped/cat_249.jpg\n", + "Saved cropped cat image: output/cropped/cat_250.jpg\n", + "Saved cropped cat image: output/cropped/cat_251.jpg\n", + "Saved cropped cat image: output/cropped/cat_252.jpg\n", + "Saved cropped cat image: output/cropped/cat_253.jpg\n", + "Saved cropped cat image: output/cropped/cat_254.jpg\n", + "Saved cropped cat image: output/cropped/cat_255.jpg\n", + "Saved cropped cat image: output/cropped/cat_256.jpg\n", + "Saved cropped cat image: output/cropped/cat_257.jpg\n", + "Saved cropped cat image: output/cropped/cat_258.jpg\n", + "Saved cropped cat image: output/cropped/cat_259.jpg\n", + "Saved cropped cat image: output/cropped/cat_260.jpg\n", + "Saved cropped cat image: output/cropped/cat_261.jpg\n", + "Saved cropped cat image: output/cropped/cat_262.jpg\n", + "Saved cropped cat image: output/cropped/cat_263.jpg\n", + "Saved cropped cat image: output/cropped/cat_264.jpg\n", + "Saved cropped cat image: output/cropped/cat_265.jpg\n", + "Saved cropped cat image: output/cropped/cat_266.jpg\n", + "Saved cropped cat image: output/cropped/cat_267.jpg\n", + "Saved cropped cat image: output/cropped/cat_268.jpg\n", + "Saved cropped cat image: output/cropped/cat_269.jpg\n", + "Saved cropped cat image: output/cropped/cat_270.jpg\n", + "Saved cropped cat image: output/cropped/cat_271.jpg\n", + "Saved cropped cat image: output/cropped/cat_272.jpg\n", + "Saved cropped cat image: output/cropped/cat_273.jpg\n", + "Saved cropped cat image: output/cropped/cat_274.jpg\n", + "Saved cropped cat image: output/cropped/cat_275.jpg\n", + "Saved cropped cat image: output/cropped/cat_276.jpg\n", + "Saved cropped cat image: output/cropped/cat_277.jpg\n", + "Saved cropped cat image: output/cropped/cat_278.jpg\n", + "Saved cropped cat image: output/cropped/cat_279.jpg\n", + "Saved cropped cat image: output/cropped/cat_280.jpg\n", + "Saved cropped cat image: output/cropped/cat_281.jpg\n", + "Saved cropped cat image: output/cropped/cat_282.jpg\n", + "Saved cropped cat image: output/cropped/cat_283.jpg\n", + "Saved cropped cat image: output/cropped/cat_284.jpg\n", + "Saved cropped cat image: output/cropped/cat_285.jpg\n", + "Saved cropped cat image: output/cropped/cat_286.jpg\n", + "Saved cropped cat image: output/cropped/cat_287.jpg\n", + "Saved cropped cat image: output/cropped/cat_288.jpg\n", + "Saved cropped cat image: output/cropped/cat_289.jpg\n", + "Saved cropped cat image: output/cropped/cat_290.jpg\n", + "Saved cropped cat image: output/cropped/cat_291.jpg\n", + "Saved cropped cat image: output/cropped/cat_292.jpg\n", + "Saved cropped cat image: output/cropped/cat_293.jpg\n", + "Saved cropped cat image: output/cropped/cat_294.jpg\n", + "Saved cropped cat image: output/cropped/cat_295.jpg\n", + "Saved cropped cat image: output/cropped/cat_296.jpg\n", + "Saved cropped cat image: output/cropped/cat_297.jpg\n", + "Saved cropped cat image: output/cropped/cat_298.jpg\n", + "Saved cropped cat image: output/cropped/cat_299.jpg\n", + "Saved cropped cat image: output/cropped/cat_300.jpg\n", + "Saved cropped cat image: output/cropped/cat_301.jpg\n", + "Saved cropped cat image: output/cropped/cat_302.jpg\n", + "Saved cropped cat image: output/cropped/cat_303.jpg\n", + "Saved cropped cat image: output/cropped/cat_304.jpg\n", + "Saved cropped cat image: output/cropped/cat_305.jpg\n", + "Saved cropped cat image: output/cropped/cat_306.jpg\n", + "Saved cropped cat image: output/cropped/cat_307.jpg\n", + "Saved cropped cat image: output/cropped/cat_308.jpg\n", + "Saved cropped cat image: output/cropped/cat_309.jpg\n", + "Saved cropped cat image: output/cropped/cat_310.jpg\n", + "Saved cropped cat image: output/cropped/cat_311.jpg\n", + "Saved cropped cat image: output/cropped/cat_312.jpg\n", + "Saved cropped cat image: output/cropped/cat_313.jpg\n", + "Saved cropped cat image: output/cropped/cat_314.jpg\n", + "Saved cropped cat image: output/cropped/cat_315.jpg\n", + "Saved cropped cat image: output/cropped/cat_316.jpg\n", + "Saved cropped cat image: output/cropped/cat_317.jpg\n", + "Saved cropped cat image: output/cropped/cat_318.jpg\n", + "Saved cropped cat image: output/cropped/cat_319.jpg\n", + "Saved cropped cat image: output/cropped/cat_320.jpg\n", + "Saved cropped cat image: output/cropped/cat_321.jpg\n", + "Saved cropped cat image: output/cropped/cat_322.jpg\n", + "Saved cropped cat image: output/cropped/cat_323.jpg\n", + "Saved cropped cat image: output/cropped/cat_324.jpg\n", + "Saved cropped cat image: output/cropped/cat_325.jpg\n", + "Saved cropped cat image: output/cropped/cat_326.jpg\n", + "Saved cropped cat image: output/cropped/cat_327.jpg\n", + "Saved cropped cat image: output/cropped/cat_328.jpg\n", + "Saved cropped cat image: output/cropped/cat_329.jpg\n", + "Saved cropped cat image: output/cropped/cat_330.jpg\n", + "Saved cropped cat image: output/cropped/cat_331.jpg\n", + "Saved cropped cat image: output/cropped/cat_332.jpg\n", + "Saved cropped cat image: output/cropped/cat_333.jpg\n", + "Saved cropped cat image: output/cropped/cat_334.jpg\n", + "Saved cropped cat image: output/cropped/cat_335.jpg\n", + "Saved cropped cat image: output/cropped/cat_336.jpg\n", + "Saved cropped cat image: output/cropped/cat_337.jpg\n", + "Saved cropped cat image: output/cropped/cat_338.jpg\n", + "Saved cropped cat image: output/cropped/cat_339.jpg\n", + "Saved cropped cat image: output/cropped/cat_340.jpg\n", + "Saved cropped cat image: output/cropped/cat_341.jpg\n", + "Saved cropped cat image: output/cropped/cat_342.jpg\n", + "Saved cropped cat image: output/cropped/cat_343.jpg\n", + "Saved cropped cat image: output/cropped/cat_344.jpg\n", + "Saved cropped cat image: output/cropped/cat_345.jpg\n", + "Saved cropped cat image: output/cropped/cat_346.jpg\n", + "Saved cropped cat image: output/cropped/cat_347.jpg\n", + "Saved cropped cat image: output/cropped/cat_348.jpg\n", + "Saved cropped cat image: output/cropped/cat_349.jpg\n", + "Saved cropped cat image: output/cropped/cat_350.jpg\n", + "Saved cropped cat image: output/cropped/cat_351.jpg\n", + "Saved cropped cat image: output/cropped/cat_352.jpg\n", + "Saved cropped cat image: output/cropped/cat_353.jpg\n", + "Saved cropped cat image: output/cropped/cat_354.jpg\n", + "Saved cropped cat image: output/cropped/cat_355.jpg\n", + "Saved cropped cat image: output/cropped/cat_356.jpg\n", + "Saved cropped cat image: output/cropped/cat_357.jpg\n", + "Saved cropped cat image: output/cropped/cat_358.jpg\n", + "Saved cropped cat image: output/cropped/cat_359.jpg\n", + "Saved cropped cat image: output/cropped/cat_360.jpg\n", + "Saved cropped cat image: output/cropped/cat_361.jpg\n", + "Saved cropped cat image: output/cropped/cat_362.jpg\n", + "Saved cropped cat image: output/cropped/cat_363.jpg\n", + "Saved cropped cat image: output/cropped/cat_364.jpg\n", + "Saved cropped cat image: output/cropped/cat_365.jpg\n", + "Saved cropped cat image: output/cropped/cat_366.jpg\n", + "Saved cropped cat image: output/cropped/cat_367.jpg\n", + "Saved cropped cat image: output/cropped/cat_368.jpg\n", + "Saved cropped cat image: output/cropped/cat_369.jpg\n", + "Saved cropped cat image: output/cropped/cat_370.jpg\n", + "Saved cropped cat image: output/cropped/cat_371.jpg\n", + "Saved cropped cat image: output/cropped/cat_372.jpg\n", + "Saved cropped cat image: output/cropped/cat_373.jpg\n", + "Saved cropped cat image: output/cropped/cat_374.jpg\n", + "Saved cropped cat image: output/cropped/cat_375.jpg\n", + "Saved cropped cat image: output/cropped/cat_376.jpg\n", + "Saved cropped cat image: output/cropped/cat_377.jpg\n", + "Saved cropped cat image: output/cropped/cat_378.jpg\n", + "Saved cropped cat image: output/cropped/cat_379.jpg\n", + "Saved cropped cat image: output/cropped/cat_380.jpg\n", + "Saved cropped cat image: output/cropped/cat_381.jpg\n", + "Saved cropped cat image: output/cropped/cat_382.jpg\n", + "Saved cropped cat image: output/cropped/cat_383.jpg\n", + "Saved cropped cat image: output/cropped/cat_384.jpg\n", + "Saved cropped cat image: output/cropped/cat_385.jpg\n", + "Saved cropped cat image: output/cropped/cat_386.jpg\n", + "Saved cropped cat image: output/cropped/cat_387.jpg\n", + "Saved cropped cat image: output/cropped/cat_388.jpg\n", + "Saved cropped cat image: output/cropped/cat_389.jpg\n", + "Saved cropped cat image: output/cropped/cat_390.jpg\n", + "Saved cropped cat image: output/cropped/cat_391.jpg\n", + "Saved cropped cat image: output/cropped/cat_392.jpg\n", + "Saved cropped cat image: output/cropped/cat_393.jpg\n", + "Saved cropped cat image: output/cropped/cat_394.jpg\n", + "Saved cropped cat image: output/cropped/cat_395.jpg\n", + "Saved cropped cat image: output/cropped/cat_396.jpg\n", + "Saved cropped cat image: output/cropped/cat_397.jpg\n", + "Saved cropped cat image: output/cropped/cat_398.jpg\n", + "Saved cropped cat image: output/cropped/cat_399.jpg\n", + "Saved cropped cat image: output/cropped/cat_400.jpg\n", + "Saved cropped cat image: output/cropped/cat_401.jpg\n", + "Saved cropped cat image: output/cropped/cat_402.jpg\n", + "Saved cropped cat image: output/cropped/cat_403.jpg\n", + "Saved cropped cat image: output/cropped/cat_404.jpg\n", + "Saved cropped cat image: output/cropped/cat_405.jpg\n", + "Saved cropped cat image: output/cropped/cat_406.jpg\n", + "Saved cropped cat image: output/cropped/cat_407.jpg\n", + "Saved cropped cat image: output/cropped/cat_408.jpg\n", + "Saved cropped cat image: output/cropped/cat_409.jpg\n", + "Saved cropped cat image: output/cropped/cat_410.jpg\n", + "Saved cropped cat image: output/cropped/cat_411.jpg\n", + "Saved cropped cat image: output/cropped/cat_412.jpg\n", + "Saved cropped cat image: output/cropped/cat_413.jpg\n", + "Saved cropped cat image: output/cropped/cat_414.jpg\n", + "Saved cropped cat image: output/cropped/cat_415.jpg\n", + "Saved cropped cat image: output/cropped/cat_416.jpg\n", + "Saved cropped cat image: output/cropped/cat_417.jpg\n", + "Saved cropped cat image: output/cropped/cat_418.jpg\n", + "Saved cropped cat image: output/cropped/cat_419.jpg\n", + "Saved cropped cat image: output/cropped/cat_420.jpg\n", + "Saved cropped cat image: output/cropped/cat_421.jpg\n", + "Saved cropped cat image: output/cropped/cat_422.jpg\n", + "Saved cropped cat image: output/cropped/cat_423.jpg\n", + "Saved cropped cat image: output/cropped/cat_424.jpg\n", + "Saved cropped cat image: output/cropped/cat_425.jpg\n", + "Saved cropped cat image: output/cropped/cat_426.jpg\n", + "Saved cropped cat image: output/cropped/cat_427.jpg\n", + "Saved cropped cat image: output/cropped/cat_428.jpg\n", + "Saved cropped cat image: output/cropped/cat_429.jpg\n", + "Saved cropped cat image: output/cropped/cat_430.jpg\n", + "Saved cropped cat image: output/cropped/cat_431.jpg\n", + "Saved cropped cat image: output/cropped/cat_432.jpg\n", + "Saved cropped cat image: output/cropped/cat_433.jpg\n", + "Saved cropped cat image: output/cropped/cat_434.jpg\n", + "Saved cropped cat image: output/cropped/cat_435.jpg\n", + "Saved cropped cat image: output/cropped/cat_436.jpg\n", + "Saved cropped cat image: output/cropped/cat_437.jpg\n", + "Saved cropped cat image: output/cropped/cat_438.jpg\n", + "Saved cropped cat image: output/cropped/cat_439.jpg\n", + "Saved cropped cat image: output/cropped/cat_440.jpg\n", + "Saved cropped cat image: output/cropped/cat_441.jpg\n", + "Saved cropped cat image: output/cropped/cat_442.jpg\n", + "Saved cropped cat image: output/cropped/cat_443.jpg\n", + "Saved cropped cat image: output/cropped/cat_444.jpg\n", + "Saved cropped cat image: output/cropped/cat_445.jpg\n", + "Saved cropped cat image: output/cropped/cat_446.jpg\n", + "Saved cropped cat image: output/cropped/cat_447.jpg\n", + "Saved cropped cat image: output/cropped/cat_448.jpg\n", + "Saved cropped cat image: output/cropped/cat_449.jpg\n", + "Saved cropped cat image: output/cropped/cat_450.jpg\n", + "Saved cropped cat image: output/cropped/cat_451.jpg\n", + "Saved cropped cat image: output/cropped/cat_452.jpg\n", + "Saved cropped cat image: output/cropped/cat_453.jpg\n", + "Saved cropped cat image: output/cropped/cat_454.jpg\n", + "Saved cropped cat image: output/cropped/cat_455.jpg\n", + "Saved cropped cat image: output/cropped/cat_456.jpg\n", + "Saved cropped cat image: output/cropped/cat_457.jpg\n", + "Saved cropped cat image: output/cropped/cat_458.jpg\n", + "Saved cropped cat image: output/cropped/cat_459.jpg\n", + "Saved cropped cat image: output/cropped/cat_460.jpg\n", + "Saved cropped cat image: output/cropped/cat_461.jpg\n", + "Saved cropped cat image: output/cropped/cat_462.jpg\n", + "Saved cropped cat image: output/cropped/cat_463.jpg\n", + "Saved cropped cat image: output/cropped/cat_464.jpg\n", + "Saved cropped cat image: output/cropped/cat_465.jpg\n", + "Saved cropped cat image: output/cropped/cat_466.jpg\n", + "Saved cropped cat image: output/cropped/cat_467.jpg\n", + "Saved cropped cat image: output/cropped/cat_468.jpg\n", + "Saved cropped cat image: output/cropped/cat_469.jpg\n", + "Saved cropped cat image: output/cropped/cat_470.jpg\n", + "Saved cropped cat image: output/cropped/cat_471.jpg\n", + "Saved cropped cat image: output/cropped/cat_472.jpg\n", + "Saved cropped cat image: output/cropped/cat_473.jpg\n", + "Saved cropped cat image: output/cropped/cat_474.jpg\n", + "Saved cropped cat image: output/cropped/cat_475.jpg\n", + "Saved cropped cat image: output/cropped/cat_476.jpg\n", + "Saved cropped cat image: output/cropped/cat_477.jpg\n", + "Saved cropped cat image: output/cropped/cat_478.jpg\n", + "Saved cropped cat image: output/cropped/cat_479.jpg\n", + "Saved cropped cat image: output/cropped/cat_480.jpg\n", + "Saved cropped cat image: output/cropped/cat_481.jpg\n", + "Saved cropped cat image: output/cropped/cat_482.jpg\n", + "Saved cropped cat image: output/cropped/cat_483.jpg\n", + "Saved cropped cat image: output/cropped/cat_484.jpg\n", + "Saved cropped cat image: output/cropped/cat_485.jpg\n", + "Saved cropped cat image: output/cropped/cat_486.jpg\n", + "Saved cropped cat image: output/cropped/cat_487.jpg\n", + "Saved cropped cat image: output/cropped/cat_488.jpg\n", + "Saved cropped cat image: output/cropped/cat_489.jpg\n", + "Saved cropped cat image: output/cropped/cat_490.jpg\n", + "Saved cropped cat image: output/cropped/cat_491.jpg\n", + "Saved cropped cat image: output/cropped/cat_492.jpg\n", + "Saved cropped cat image: output/cropped/cat_493.jpg\n", + "Saved cropped cat image: output/cropped/cat_494.jpg\n", + "Saved cropped cat image: output/cropped/cat_495.jpg\n", + "Saved cropped cat image: output/cropped/cat_496.jpg\n", + "Saved cropped cat image: output/cropped/cat_497.jpg\n", + "Saved cropped cat image: output/cropped/cat_498.jpg\n", + "Saved cropped cat image: output/cropped/cat_499.jpg\n", + "Saved cropped cat image: output/cropped/cat_500.jpg\n", + "Saved cropped cat image: output/cropped/cat_501.jpg\n", + "Saved cropped cat image: output/cropped/cat_502.jpg\n", + "Saved cropped cat image: output/cropped/cat_503.jpg\n", + "Saved cropped cat image: output/cropped/cat_504.jpg\n", + "Saved cropped cat image: output/cropped/cat_505.jpg\n", + "Saved cropped cat image: output/cropped/cat_506.jpg\n", + "Saved cropped cat image: output/cropped/cat_507.jpg\n", + "Saved cropped cat image: output/cropped/cat_508.jpg\n", + "Saved cropped cat image: output/cropped/cat_509.jpg\n", + "Saved cropped cat image: output/cropped/cat_510.jpg\n", + "Saved cropped cat image: output/cropped/cat_511.jpg\n", + "Saved cropped cat image: output/cropped/cat_512.jpg\n", + "Saved cropped cat image: output/cropped/cat_513.jpg\n", + "Saved cropped cat image: output/cropped/cat_514.jpg\n", + "Saved cropped cat image: output/cropped/cat_515.jpg\n", + "Saved cropped cat image: output/cropped/cat_516.jpg\n", + "Saved cropped cat image: output/cropped/cat_517.jpg\n", + "Saved cropped cat image: output/cropped/cat_518.jpg\n", + "Saved cropped cat image: output/cropped/cat_519.jpg\n", + "Saved cropped cat image: output/cropped/cat_520.jpg\n", + "Saved cropped cat image: output/cropped/cat_521.jpg\n", + "Saved cropped cat image: output/cropped/cat_522.jpg\n", + "Saved cropped cat image: output/cropped/cat_523.jpg\n", + "Saved cropped cat image: output/cropped/cat_524.jpg\n", + "Saved cropped cat image: output/cropped/cat_525.jpg\n", + "Saved cropped cat image: output/cropped/cat_526.jpg\n", + "Saved cropped cat image: output/cropped/cat_527.jpg\n", + "Saved cropped cat image: output/cropped/cat_528.jpg\n", + "Saved cropped cat image: output/cropped/cat_529.jpg\n", + "Saved cropped cat image: output/cropped/cat_530.jpg\n", + "Saved cropped cat image: output/cropped/cat_531.jpg\n", + "Saved cropped cat image: output/cropped/cat_532.jpg\n", + "Saved cropped cat image: output/cropped/cat_533.jpg\n", + "Saved cropped cat image: output/cropped/cat_534.jpg\n", + "Saved cropped cat image: output/cropped/cat_535.jpg\n", + "Saved cropped cat image: output/cropped/cat_536.jpg\n", + "Saved cropped cat image: output/cropped/cat_537.jpg\n", + "Saved cropped cat image: output/cropped/cat_538.jpg\n", + "Saved cropped cat image: output/cropped/cat_539.jpg\n", + "Saved cropped cat image: output/cropped/cat_540.jpg\n", + "Saved cropped cat image: output/cropped/cat_541.jpg\n", + "Saved cropped cat image: output/cropped/cat_542.jpg\n", + "Saved cropped cat image: output/cropped/cat_543.jpg\n", + "Saved cropped cat image: output/cropped/cat_544.jpg\n", + "Saved cropped cat image: output/cropped/cat_545.jpg\n", + "Saved cropped cat image: output/cropped/cat_546.jpg\n", + "Saved cropped cat image: output/cropped/cat_547.jpg\n", + "Saved cropped cat image: output/cropped/cat_548.jpg\n", + "Saved cropped cat image: output/cropped/cat_549.jpg\n", + "Saved cropped cat image: output/cropped/cat_550.jpg\n", + "Saved cropped cat image: output/cropped/cat_551.jpg\n", + "Saved cropped cat image: output/cropped/cat_552.jpg\n" + ] + } + ], + "source": [ + "os.makedirs(output_folder+'cropped', exist_ok=True) # Ensure the directory exists\n", + "cat_count = 0 # Counter for saving cat images\n", + "for result in results:\n", + " boxes = result.boxes\n", + "\n", + " for box in boxes:\n", + " # Get class ID and confidence\n", + " class_id = int(box.cls[0])\n", + " confidence = box.conf[0]\n", + "\n", + " # Process only \"cat\" items (cls id = 15)\n", + " if class_id == 15:\n", + " # Get bounding box coordinates\n", + " x_min, y_min, x_max, y_max = map(int, box.xyxy[0])\n", + "\n", + " # Crop the image\n", + " cropped_cat = result.orig_img[y_min:y_max, x_min:x_max]\n", + "\n", + " # Save the cropped image\n", + " cat_count += 1\n", + " output_path = os.path.join(output_folder,f\"cropped/cat_{result}.jpg\")\n", + " cv2.imwrite(output_path, cropped_cat)\n", + "\n", + " print(f\"Saved cropped cat image: {output_path}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\danie\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\torchvision\\models\\_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.\n", + " warnings.warn(\n", + "c:\\Users\\danie\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\torchvision\\models\\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=ResNet18_Weights.IMAGENET1K_V1`. You can also use `weights=ResNet18_Weights.DEFAULT` to get the most up-to-date weights.\n", + " warnings.warn(msg)\n" + ] + } + ], + "source": [ + "# Feature Extraction with ResNet18\n", + "# Load ResNet18 Model\n", + "resnet = models.resnet18(pretrained=True)\n", + "resnet = torch.nn.Sequential(*(list(resnet.children())[:-1])) # Remove classification layer\n", + "resnet.eval()\n", + "\n", + "# Define Preprocessing\n", + "preprocess = transforms.Compose([\n", + " transforms.Resize((224, 224)),\n", + " transforms.ToTensor(),\n", + " transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),\n", + "])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# Extract Features\n", + "def extract_features(image_path):\n", + " img = Image.open(image_path).convert(\"RGB\")\n", + " img_tensor = preprocess(img).unsqueeze(0)\n", + " with torch.no_grad():\n", + " features = resnet(img_tensor)\n", + " return features.squeeze().numpy()" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "crop_folder = 'output/cropped'\n", + "feature_list = []\n", + "crop_images = [os.path.join(crop_folder, img) for img in os.listdir(crop_folder) if img.endswith(\".jpg\")]" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [], + "source": [ + "for crop_path in crop_images:\n", + " features = extract_features(crop_path)\n", + " feature_list.append(features)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "# Convert the list of features into a NumPy array\n", + "features_array = np.array(feature_list)\n", + "# Perform K-Means clustering (2 clusters for your case)\n", + "kmeans = KMeans(n_clusters=2, random_state=42)\n", + "labels = kmeans.fit_predict(features_array)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cat_1.jpg belongs to cluster 0\n", + "cat_10.jpg belongs to cluster 0\n", + "cat_100.jpg belongs to cluster 0\n", + "cat_101.jpg belongs to cluster 1\n", + "cat_102.jpg belongs to cluster 0\n", + "cat_103.jpg belongs to cluster 0\n", + "cat_104.jpg belongs to cluster 0\n", + "cat_105.jpg belongs to cluster 0\n", + "cat_106.jpg belongs to cluster 1\n", + "cat_107.jpg belongs to cluster 1\n", + "cat_108.jpg belongs to cluster 0\n", + "cat_109.jpg belongs to cluster 1\n", + "cat_11.jpg belongs to cluster 0\n", + "cat_110.jpg belongs to cluster 1\n", + "cat_111.jpg belongs to cluster 1\n", + "cat_112.jpg belongs to cluster 1\n", + "cat_113.jpg belongs to cluster 1\n", + "cat_114.jpg belongs to cluster 1\n", + "cat_115.jpg belongs to cluster 1\n", + "cat_116.jpg belongs to cluster 1\n", + "cat_117.jpg belongs to cluster 1\n", + "cat_118.jpg belongs to cluster 1\n", + "cat_119.jpg belongs to cluster 1\n", + "cat_12.jpg belongs to cluster 0\n", + "cat_120.jpg belongs to cluster 1\n", + "cat_121.jpg belongs to cluster 1\n", + "cat_122.jpg belongs to cluster 1\n", + "cat_123.jpg belongs to cluster 0\n", + "cat_124.jpg belongs to cluster 0\n", + "cat_125.jpg belongs to cluster 0\n", + "cat_126.jpg belongs to cluster 0\n", + "cat_127.jpg belongs to cluster 1\n", + "cat_128.jpg belongs to cluster 1\n", + "cat_129.jpg belongs to cluster 1\n", + "cat_13.jpg belongs to cluster 0\n", + "cat_130.jpg belongs to cluster 1\n", + "cat_131.jpg belongs to cluster 1\n", + "cat_132.jpg belongs to cluster 1\n", + "cat_133.jpg belongs to cluster 1\n", + "cat_134.jpg belongs to cluster 1\n", + "cat_135.jpg belongs to cluster 1\n", + "cat_136.jpg belongs to cluster 0\n", + "cat_137.jpg belongs to cluster 0\n", + "cat_138.jpg belongs to cluster 0\n", + "cat_139.jpg belongs to cluster 0\n", + "cat_14.jpg belongs to cluster 0\n", + "cat_140.jpg belongs to cluster 0\n", + "cat_141.jpg belongs to cluster 0\n", + "cat_142.jpg belongs to cluster 1\n", + "cat_143.jpg belongs to cluster 1\n", + "cat_144.jpg belongs to cluster 0\n", + "cat_145.jpg belongs to cluster 0\n", + "cat_146.jpg belongs to cluster 0\n", + "cat_147.jpg belongs to cluster 1\n", + "cat_148.jpg belongs to cluster 1\n", + "cat_149.jpg belongs to cluster 1\n", + "cat_15.jpg belongs to cluster 0\n", + "cat_150.jpg belongs to cluster 0\n", + "cat_151.jpg belongs to cluster 0\n", + "cat_152.jpg belongs to cluster 0\n", + "cat_153.jpg belongs to cluster 0\n", + "cat_154.jpg belongs to cluster 1\n", + "cat_155.jpg belongs to cluster 0\n", + "cat_156.jpg belongs to cluster 0\n", + "cat_157.jpg belongs to cluster 0\n", + "cat_158.jpg belongs to cluster 0\n", + "cat_159.jpg belongs to cluster 1\n", + "cat_16.jpg belongs to cluster 0\n", + "cat_160.jpg belongs to cluster 1\n", + "cat_161.jpg belongs to cluster 1\n", + "cat_162.jpg belongs to cluster 1\n", + "cat_163.jpg belongs to cluster 0\n", + "cat_164.jpg belongs to cluster 0\n", + "cat_165.jpg belongs to cluster 1\n", + "cat_166.jpg belongs to cluster 0\n", + "cat_167.jpg belongs to cluster 1\n", + "cat_168.jpg belongs to cluster 1\n", + "cat_169.jpg belongs to cluster 1\n", + "cat_17.jpg belongs to cluster 0\n", + "cat_170.jpg belongs to cluster 0\n", + "cat_171.jpg belongs to cluster 1\n", + "cat_172.jpg belongs to cluster 0\n", + "cat_173.jpg belongs to cluster 0\n", + "cat_174.jpg belongs to cluster 0\n", + "cat_175.jpg belongs to cluster 0\n", + "cat_176.jpg belongs to cluster 0\n", + "cat_177.jpg belongs to cluster 0\n", + "cat_178.jpg belongs to cluster 0\n", + "cat_179.jpg belongs to cluster 1\n", + "cat_18.jpg belongs to cluster 0\n", + "cat_180.jpg belongs to cluster 0\n", + "cat_181.jpg belongs to cluster 0\n", + "cat_182.jpg belongs to cluster 0\n", + "cat_183.jpg belongs to cluster 0\n", + "cat_184.jpg belongs to cluster 0\n", + "cat_185.jpg belongs to cluster 1\n", + "cat_186.jpg belongs to cluster 0\n", + "cat_187.jpg belongs to cluster 0\n", + "cat_188.jpg belongs to cluster 1\n", + "cat_189.jpg belongs to cluster 0\n", + "cat_19.jpg belongs to cluster 0\n", + "cat_190.jpg belongs to cluster 0\n", + "cat_191.jpg belongs to cluster 1\n", + "cat_192.jpg belongs to cluster 1\n", + "cat_193.jpg belongs to cluster 0\n", + "cat_194.jpg belongs to cluster 1\n", + "cat_195.jpg belongs to cluster 1\n", + "cat_196.jpg belongs to cluster 1\n", + "cat_197.jpg belongs to cluster 0\n", + "cat_198.jpg belongs to cluster 0\n", + "cat_199.jpg belongs to cluster 0\n", + "cat_2.jpg belongs to cluster 0\n", + "cat_20.jpg belongs to cluster 0\n", + "cat_200.jpg belongs to cluster 0\n", + "cat_201.jpg belongs to cluster 1\n", + "cat_202.jpg belongs to cluster 0\n", + "cat_203.jpg belongs to cluster 0\n", + "cat_204.jpg belongs to cluster 1\n", + "cat_205.jpg belongs to cluster 0\n", + "cat_206.jpg belongs to cluster 1\n", + "cat_207.jpg belongs to cluster 0\n", + "cat_208.jpg belongs to cluster 0\n", + "cat_209.jpg belongs to cluster 0\n", + "cat_21.jpg belongs to cluster 0\n", + "cat_210.jpg belongs to cluster 0\n", + "cat_211.jpg belongs to cluster 0\n", + "cat_212.jpg belongs to cluster 0\n", + "cat_213.jpg belongs to cluster 1\n", + "cat_214.jpg belongs to cluster 1\n", + "cat_215.jpg belongs to cluster 1\n", + "cat_216.jpg belongs to cluster 1\n", + "cat_217.jpg belongs to cluster 1\n", + "cat_218.jpg belongs to cluster 0\n", + "cat_219.jpg belongs to cluster 1\n", + "cat_22.jpg belongs to cluster 1\n", + "cat_220.jpg belongs to cluster 0\n", + "cat_221.jpg belongs to cluster 0\n", + "cat_222.jpg belongs to cluster 0\n", + "cat_223.jpg belongs to cluster 0\n", + "cat_224.jpg belongs to cluster 0\n", + "cat_225.jpg belongs to cluster 1\n", + "cat_226.jpg belongs to cluster 1\n", + "cat_227.jpg belongs to cluster 0\n", + "cat_228.jpg belongs to cluster 0\n", + "cat_229.jpg belongs to cluster 0\n", + "cat_23.jpg belongs to cluster 1\n", + "cat_230.jpg belongs to cluster 0\n", + "cat_231.jpg belongs to cluster 0\n", + "cat_232.jpg belongs to cluster 0\n", + "cat_233.jpg belongs to cluster 0\n", + "cat_234.jpg belongs to cluster 0\n", + "cat_235.jpg belongs to cluster 0\n", + "cat_236.jpg belongs to cluster 0\n", + "cat_237.jpg belongs to cluster 0\n", + "cat_238.jpg belongs to cluster 0\n", + "cat_239.jpg belongs to cluster 0\n", + "cat_24.jpg belongs to cluster 1\n", + "cat_240.jpg belongs to cluster 0\n", + "cat_241.jpg belongs to cluster 1\n", + "cat_242.jpg belongs to cluster 0\n", + "cat_243.jpg belongs to cluster 0\n", + "cat_244.jpg belongs to cluster 0\n", + "cat_245.jpg belongs to cluster 0\n", + "cat_246.jpg belongs to cluster 0\n", + "cat_247.jpg belongs to cluster 0\n", + "cat_248.jpg belongs to cluster 0\n", + "cat_249.jpg belongs to cluster 0\n", + "cat_25.jpg belongs to cluster 1\n", + "cat_250.jpg belongs to cluster 0\n", + "cat_251.jpg belongs to cluster 0\n", + "cat_252.jpg belongs to cluster 0\n", + "cat_253.jpg belongs to cluster 0\n", + "cat_254.jpg belongs to cluster 0\n", + "cat_255.jpg belongs to cluster 0\n", + "cat_256.jpg belongs to cluster 0\n", + "cat_257.jpg belongs to cluster 0\n", + "cat_258.jpg belongs to cluster 0\n", + "cat_259.jpg belongs to cluster 0\n", + "cat_26.jpg belongs to cluster 1\n", + "cat_260.jpg belongs to cluster 1\n", + "cat_261.jpg belongs to cluster 0\n", + "cat_262.jpg belongs to cluster 0\n", + "cat_263.jpg belongs to cluster 1\n", + "cat_264.jpg belongs to cluster 1\n", + "cat_265.jpg belongs to cluster 1\n", + "cat_266.jpg belongs to cluster 1\n", + "cat_267.jpg belongs to cluster 1\n", + "cat_268.jpg belongs to cluster 1\n", + "cat_269.jpg belongs to cluster 0\n", + "cat_27.jpg belongs to cluster 1\n", + "cat_270.jpg belongs to cluster 0\n", + "cat_271.jpg belongs to cluster 1\n", + "cat_272.jpg belongs to cluster 1\n", + "cat_273.jpg belongs to cluster 1\n", + "cat_274.jpg belongs to cluster 1\n", + "cat_275.jpg belongs to cluster 1\n", + "cat_276.jpg belongs to cluster 1\n", + "cat_277.jpg belongs to cluster 1\n", + "cat_278.jpg belongs to cluster 1\n", + "cat_279.jpg belongs to cluster 1\n", + "cat_28.jpg belongs to cluster 1\n", + "cat_280.jpg belongs to cluster 1\n", + "cat_281.jpg belongs to cluster 1\n", + "cat_282.jpg belongs to cluster 1\n", + "cat_283.jpg belongs to cluster 0\n", + "cat_284.jpg belongs to cluster 0\n", + "cat_285.jpg belongs to cluster 0\n", + "cat_286.jpg belongs to cluster 0\n", + "cat_287.jpg belongs to cluster 0\n", + "cat_288.jpg belongs to cluster 0\n", + "cat_289.jpg belongs to cluster 0\n", + "cat_29.jpg belongs to cluster 1\n", + "cat_290.jpg belongs to cluster 0\n", + "cat_291.jpg belongs to cluster 0\n", + "cat_292.jpg belongs to cluster 0\n", + "cat_293.jpg belongs to cluster 1\n", + "cat_294.jpg belongs to cluster 0\n", + "cat_295.jpg belongs to cluster 1\n", + "cat_296.jpg belongs to cluster 0\n", + "cat_297.jpg belongs to cluster 0\n", + "cat_298.jpg belongs to cluster 1\n", + "cat_299.jpg belongs to cluster 1\n", + "cat_3.jpg belongs to cluster 1\n", + "cat_30.jpg belongs to cluster 1\n", + "cat_300.jpg belongs to cluster 1\n", + "cat_301.jpg belongs to cluster 1\n", + "cat_302.jpg belongs to cluster 1\n", + "cat_303.jpg belongs to cluster 0\n", + "cat_304.jpg belongs to cluster 0\n", + "cat_305.jpg belongs to cluster 0\n", + "cat_306.jpg belongs to cluster 1\n", + "cat_307.jpg belongs to cluster 1\n", + "cat_308.jpg belongs to cluster 1\n", + "cat_309.jpg belongs to cluster 1\n", + "cat_31.jpg belongs to cluster 1\n", + "cat_310.jpg belongs to cluster 1\n", + "cat_311.jpg belongs to cluster 1\n", + "cat_312.jpg belongs to cluster 1\n", + "cat_313.jpg belongs to cluster 1\n", + "cat_314.jpg belongs to cluster 1\n", + "cat_315.jpg belongs to cluster 1\n", + "cat_316.jpg belongs to cluster 0\n", + "cat_317.jpg belongs to cluster 0\n", + "cat_318.jpg belongs to cluster 0\n", + "cat_319.jpg belongs to cluster 0\n", + "cat_32.jpg belongs to cluster 0\n", + "cat_320.jpg belongs to cluster 0\n", + "cat_321.jpg belongs to cluster 0\n", + "cat_322.jpg belongs to cluster 0\n", + "cat_323.jpg belongs to cluster 0\n", + "cat_324.jpg belongs to cluster 1\n", + "cat_325.jpg belongs to cluster 0\n", + "cat_326.jpg belongs to cluster 0\n", + "cat_327.jpg belongs to cluster 0\n", + "cat_328.jpg belongs to cluster 0\n", + "cat_329.jpg belongs to cluster 0\n", + "cat_33.jpg belongs to cluster 0\n", + "cat_330.jpg belongs to cluster 1\n", + "cat_331.jpg belongs to cluster 0\n", + "cat_332.jpg belongs to cluster 0\n", + "cat_333.jpg belongs to cluster 0\n", + "cat_334.jpg belongs to cluster 0\n", + "cat_335.jpg belongs to cluster 0\n", + "cat_336.jpg belongs to cluster 0\n", + "cat_337.jpg belongs to cluster 0\n", + "cat_338.jpg belongs to cluster 0\n", + "cat_339.jpg belongs to cluster 0\n", + "cat_34.jpg belongs to cluster 1\n", + "cat_340.jpg belongs to cluster 0\n", + "cat_341.jpg belongs to cluster 0\n", + "cat_342.jpg belongs to cluster 0\n", + "cat_343.jpg belongs to cluster 0\n", + "cat_344.jpg belongs to cluster 0\n", + "cat_345.jpg belongs to cluster 1\n", + "cat_346.jpg belongs to cluster 0\n", + "cat_347.jpg belongs to cluster 0\n", + "cat_348.jpg belongs to cluster 1\n", + "cat_349.jpg belongs to cluster 1\n", + "cat_35.jpg belongs to cluster 1\n", + "cat_350.jpg belongs to cluster 0\n", + "cat_351.jpg belongs to cluster 0\n", + "cat_352.jpg belongs to cluster 0\n", + "cat_353.jpg belongs to cluster 0\n", + "cat_354.jpg belongs to cluster 1\n", + "cat_355.jpg belongs to cluster 0\n", + "cat_356.jpg belongs to cluster 1\n", + "cat_357.jpg belongs to cluster 1\n", + "cat_358.jpg belongs to cluster 1\n", + "cat_359.jpg belongs to cluster 0\n", + "cat_36.jpg belongs to cluster 0\n", + "cat_360.jpg belongs to cluster 0\n", + "cat_361.jpg belongs to cluster 0\n", + "cat_362.jpg belongs to cluster 0\n", + "cat_363.jpg belongs to cluster 0\n", + "cat_364.jpg belongs to cluster 0\n", + "cat_365.jpg belongs to cluster 0\n", + "cat_366.jpg belongs to cluster 0\n", + "cat_367.jpg belongs to cluster 0\n", + "cat_368.jpg belongs to cluster 0\n", + "cat_369.jpg belongs to cluster 0\n", + "cat_37.jpg belongs to cluster 1\n", + "cat_370.jpg belongs to cluster 0\n", + "cat_371.jpg belongs to cluster 0\n", + "cat_372.jpg belongs to cluster 0\n", + "cat_373.jpg belongs to cluster 0\n", + "cat_374.jpg belongs to cluster 1\n", + "cat_375.jpg belongs to cluster 0\n", + "cat_376.jpg belongs to cluster 0\n", + "cat_377.jpg belongs to cluster 1\n", + "cat_378.jpg belongs to cluster 0\n", + "cat_379.jpg belongs to cluster 0\n", + "cat_38.jpg belongs to cluster 1\n", + "cat_380.jpg belongs to cluster 0\n", + "cat_381.jpg belongs to cluster 0\n", + "cat_382.jpg belongs to cluster 0\n", + "cat_383.jpg belongs to cluster 0\n", + "cat_384.jpg belongs to cluster 0\n", + "cat_385.jpg belongs to cluster 0\n", + "cat_386.jpg belongs to cluster 0\n", + "cat_387.jpg belongs to cluster 1\n", + "cat_388.jpg belongs to cluster 0\n", + "cat_389.jpg belongs to cluster 0\n", + "cat_39.jpg belongs to cluster 1\n", + "cat_390.jpg belongs to cluster 1\n", + "cat_391.jpg belongs to cluster 1\n", + "cat_392.jpg belongs to cluster 0\n", + "cat_393.jpg belongs to cluster 0\n", + "cat_394.jpg belongs to cluster 0\n", + "cat_395.jpg belongs to cluster 1\n", + "cat_396.jpg belongs to cluster 0\n", + "cat_397.jpg belongs to cluster 0\n", + "cat_398.jpg belongs to cluster 1\n", + "cat_399.jpg belongs to cluster 0\n", + "cat_4.jpg belongs to cluster 0\n", + "cat_40.jpg belongs to cluster 0\n", + "cat_400.jpg belongs to cluster 0\n", + "cat_401.jpg belongs to cluster 1\n", + "cat_402.jpg belongs to cluster 1\n", + "cat_403.jpg belongs to cluster 0\n", + "cat_404.jpg belongs to cluster 0\n", + "cat_405.jpg belongs to cluster 0\n", + "cat_406.jpg belongs to cluster 0\n", + "cat_407.jpg belongs to cluster 0\n", + "cat_408.jpg belongs to cluster 0\n", + "cat_409.jpg belongs to cluster 0\n", + "cat_41.jpg belongs to cluster 0\n", + "cat_410.jpg belongs to cluster 0\n", + "cat_411.jpg belongs to cluster 0\n", + "cat_412.jpg belongs to cluster 0\n", + "cat_413.jpg belongs to cluster 0\n", + "cat_414.jpg belongs to cluster 0\n", + "cat_415.jpg belongs to cluster 1\n", + "cat_416.jpg belongs to cluster 1\n", + "cat_417.jpg belongs to cluster 1\n", + "cat_418.jpg belongs to cluster 1\n", + "cat_419.jpg belongs to cluster 1\n", + "cat_42.jpg belongs to cluster 0\n", + "cat_420.jpg belongs to cluster 1\n", + "cat_421.jpg belongs to cluster 1\n", + "cat_422.jpg belongs to cluster 1\n", + "cat_423.jpg belongs to cluster 1\n", + "cat_424.jpg belongs to cluster 1\n", + "cat_425.jpg belongs to cluster 1\n", + "cat_426.jpg belongs to cluster 1\n", + "cat_427.jpg belongs to cluster 1\n", + "cat_428.jpg belongs to cluster 1\n", + "cat_429.jpg belongs to cluster 0\n", + "cat_43.jpg belongs to cluster 0\n", + "cat_430.jpg belongs to cluster 0\n", + "cat_431.jpg belongs to cluster 1\n", + "cat_432.jpg belongs to cluster 1\n", + "cat_433.jpg belongs to cluster 1\n", + "cat_434.jpg belongs to cluster 1\n", + "cat_435.jpg belongs to cluster 1\n", + "cat_436.jpg belongs to cluster 0\n", + "cat_437.jpg belongs to cluster 0\n", + "cat_438.jpg belongs to cluster 0\n", + "cat_439.jpg belongs to cluster 0\n", + "cat_44.jpg belongs to cluster 0\n", + "cat_440.jpg belongs to cluster 1\n", + "cat_441.jpg belongs to cluster 1\n", + "cat_442.jpg belongs to cluster 1\n", + "cat_443.jpg belongs to cluster 0\n", + "cat_444.jpg belongs to cluster 0\n", + "cat_445.jpg belongs to cluster 0\n", + "cat_446.jpg belongs to cluster 0\n", + "cat_447.jpg belongs to cluster 1\n", + "cat_448.jpg belongs to cluster 0\n", + "cat_449.jpg belongs to cluster 0\n", + "cat_45.jpg belongs to cluster 0\n", + "cat_450.jpg belongs to cluster 1\n", + "cat_451.jpg belongs to cluster 1\n", + "cat_452.jpg belongs to cluster 1\n", + "cat_453.jpg belongs to cluster 1\n", + "cat_454.jpg belongs to cluster 1\n", + "cat_455.jpg belongs to cluster 1\n", + "cat_456.jpg belongs to cluster 1\n", + "cat_457.jpg belongs to cluster 0\n", + "cat_458.jpg belongs to cluster 0\n", + "cat_459.jpg belongs to cluster 0\n", + "cat_46.jpg belongs to cluster 0\n", + "cat_460.jpg belongs to cluster 0\n", + "cat_461.jpg belongs to cluster 1\n", + "cat_462.jpg belongs to cluster 0\n", + "cat_463.jpg belongs to cluster 0\n", + "cat_464.jpg belongs to cluster 0\n", + "cat_465.jpg belongs to cluster 0\n", + "cat_466.jpg belongs to cluster 0\n", + "cat_467.jpg belongs to cluster 0\n", + "cat_468.jpg belongs to cluster 0\n", + "cat_469.jpg belongs to cluster 0\n", + "cat_47.jpg belongs to cluster 1\n", + "cat_470.jpg belongs to cluster 0\n", + "cat_471.jpg belongs to cluster 1\n", + "cat_472.jpg belongs to cluster 1\n", + "cat_473.jpg belongs to cluster 1\n", + "cat_474.jpg belongs to cluster 0\n", + "cat_475.jpg belongs to cluster 1\n", + "cat_476.jpg belongs to cluster 1\n", + "cat_477.jpg belongs to cluster 1\n", + "cat_478.jpg belongs to cluster 1\n", + "cat_479.jpg belongs to cluster 1\n", + "cat_48.jpg belongs to cluster 1\n", + "cat_480.jpg belongs to cluster 1\n", + "cat_481.jpg belongs to cluster 1\n", + "cat_482.jpg belongs to cluster 0\n", + "cat_483.jpg belongs to cluster 0\n", + "cat_484.jpg belongs to cluster 1\n", + "cat_485.jpg belongs to cluster 0\n", + "cat_486.jpg belongs to cluster 0\n", + "cat_487.jpg belongs to cluster 0\n", + "cat_488.jpg belongs to cluster 0\n", + "cat_489.jpg belongs to cluster 1\n", + "cat_49.jpg belongs to cluster 0\n", + "cat_490.jpg belongs to cluster 1\n", + "cat_491.jpg belongs to cluster 1\n", + "cat_492.jpg belongs to cluster 1\n", + "cat_493.jpg belongs to cluster 1\n", + "cat_494.jpg belongs to cluster 1\n", + "cat_495.jpg belongs to cluster 1\n", + "cat_496.jpg belongs to cluster 0\n", + "cat_497.jpg belongs to cluster 0\n", + "cat_498.jpg belongs to cluster 1\n", + "cat_499.jpg belongs to cluster 1\n", + "cat_5.jpg belongs to cluster 0\n", + "cat_50.jpg belongs to cluster 0\n", + "cat_500.jpg belongs to cluster 1\n", + "cat_501.jpg belongs to cluster 0\n", + "cat_502.jpg belongs to cluster 0\n", + "cat_503.jpg belongs to cluster 0\n", + "cat_504.jpg belongs to cluster 0\n", + "cat_505.jpg belongs to cluster 0\n", + "cat_506.jpg belongs to cluster 1\n", + "cat_507.jpg belongs to cluster 0\n", + "cat_508.jpg belongs to cluster 0\n", + "cat_509.jpg belongs to cluster 1\n", + "cat_51.jpg belongs to cluster 1\n", + "cat_510.jpg belongs to cluster 0\n", + "cat_511.jpg belongs to cluster 1\n", + "cat_512.jpg belongs to cluster 1\n", + "cat_513.jpg belongs to cluster 1\n", + "cat_514.jpg belongs to cluster 0\n", + "cat_515.jpg belongs to cluster 1\n", + "cat_516.jpg belongs to cluster 1\n", + "cat_517.jpg belongs to cluster 1\n", + "cat_518.jpg belongs to cluster 1\n", + "cat_519.jpg belongs to cluster 0\n", + "cat_52.jpg belongs to cluster 1\n", + "cat_520.jpg belongs to cluster 0\n", + "cat_521.jpg belongs to cluster 1\n", + "cat_522.jpg belongs to cluster 0\n", + "cat_523.jpg belongs to cluster 0\n", + "cat_524.jpg belongs to cluster 0\n", + "cat_525.jpg belongs to cluster 1\n", + "cat_526.jpg belongs to cluster 0\n", + "cat_527.jpg belongs to cluster 0\n", + "cat_528.jpg belongs to cluster 1\n", + "cat_529.jpg belongs to cluster 1\n", + "cat_53.jpg belongs to cluster 1\n", + "cat_530.jpg belongs to cluster 1\n", + "cat_531.jpg belongs to cluster 1\n", + "cat_532.jpg belongs to cluster 0\n", + "cat_533.jpg belongs to cluster 0\n", + "cat_534.jpg belongs to cluster 1\n", + "cat_535.jpg belongs to cluster 1\n", + "cat_536.jpg belongs to cluster 0\n", + "cat_537.jpg belongs to cluster 0\n", + "cat_538.jpg belongs to cluster 1\n", + "cat_539.jpg belongs to cluster 0\n", + "cat_54.jpg belongs to cluster 1\n", + "cat_540.jpg belongs to cluster 0\n", + "cat_541.jpg belongs to cluster 0\n", + "cat_542.jpg belongs to cluster 1\n", + "cat_543.jpg belongs to cluster 1\n", + "cat_544.jpg belongs to cluster 0\n", + "cat_545.jpg belongs to cluster 0\n", + "cat_546.jpg belongs to cluster 0\n", + "cat_547.jpg belongs to cluster 0\n", + "cat_548.jpg belongs to cluster 0\n", + "cat_549.jpg belongs to cluster 0\n", + "cat_55.jpg belongs to cluster 1\n", + "cat_550.jpg belongs to cluster 0\n", + "cat_551.jpg belongs to cluster 1\n", + "cat_552.jpg belongs to cluster 1\n", + "cat_56.jpg belongs to cluster 1\n", + "cat_57.jpg belongs to cluster 0\n", + "cat_58.jpg belongs to cluster 0\n", + "cat_59.jpg belongs to cluster 0\n", + "cat_6.jpg belongs to cluster 1\n", + "cat_60.jpg belongs to cluster 1\n", + "cat_61.jpg belongs to cluster 1\n", + "cat_62.jpg belongs to cluster 0\n", + "cat_63.jpg belongs to cluster 1\n", + "cat_64.jpg belongs to cluster 1\n", + "cat_65.jpg belongs to cluster 0\n", + "cat_66.jpg belongs to cluster 1\n", + "cat_67.jpg belongs to cluster 1\n", + "cat_68.jpg belongs to cluster 1\n", + "cat_69.jpg belongs to cluster 1\n", + "cat_7.jpg belongs to cluster 1\n", + "cat_70.jpg belongs to cluster 0\n", + "cat_71.jpg belongs to cluster 0\n", + "cat_72.jpg belongs to cluster 1\n", + "cat_73.jpg belongs to cluster 1\n", + "cat_74.jpg belongs to cluster 1\n", + "cat_75.jpg belongs to cluster 1\n", + "cat_76.jpg belongs to cluster 1\n", + "cat_77.jpg belongs to cluster 0\n", + "cat_78.jpg belongs to cluster 0\n", + "cat_79.jpg belongs to cluster 1\n", + "cat_8.jpg belongs to cluster 1\n", + "cat_80.jpg belongs to cluster 1\n", + "cat_81.jpg belongs to cluster 1\n", + "cat_82.jpg belongs to cluster 1\n", + "cat_83.jpg belongs to cluster 1\n", + "cat_84.jpg belongs to cluster 1\n", + "cat_85.jpg belongs to cluster 1\n", + "cat_86.jpg belongs to cluster 0\n", + "cat_87.jpg belongs to cluster 0\n", + "cat_88.jpg belongs to cluster 1\n", + "cat_89.jpg belongs to cluster 0\n", + "cat_9.jpg belongs to cluster 1\n", + "cat_90.jpg belongs to cluster 1\n", + "cat_91.jpg belongs to cluster 1\n", + "cat_92.jpg belongs to cluster 1\n", + "cat_93.jpg belongs to cluster 1\n", + "cat_94.jpg belongs to cluster 1\n", + "cat_95.jpg belongs to cluster 1\n", + "cat_96.jpg belongs to cluster 1\n", + "cat_97.jpg belongs to cluster 1\n", + "cat_98.jpg belongs to cluster 0\n", + "cat_99.jpg belongs to cluster 1\n" + ] + } + ], + "source": [ + "# Print which image belongs to which cluster\n", + "for i, crop_path in enumerate(crop_images):\n", + " cluster = labels[i]\n", + " print(f\"{os.path.basename(crop_path)} belongs to cluster {cluster}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [], + "source": [ + "labels_folder = 'dataset/annotations' # Path to save YOLO annotation files\n", + "os.makedirs(labels_folder, exist_ok=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "def save_yolo_annotations(cropped_image_path, label, box, labels_folder):\n", + " \"\"\"\n", + " Save YOLO annotation for the given image.\n", + " :param cropped_image_path: Path to the cropped image\n", + " :param label: Cluster label (0 or 1)\n", + " :param box: The bounding box (x1, y1, x2, y2) coordinates\n", + " :param labels_folder: Folder to save the annotations\n", + " \"\"\"\n", + " # Extract image name without extension\n", + " image_name = os.path.basename(cropped_image_path).split('.')[0]\n", + " \n", + " # Normalize the bounding box coordinates\n", + " image = cv2.imread(cropped_image_path)\n", + " h, w, _ = image.shape\n", + "\n", + " # YOLO requires normalized coordinates: (x_center, y_center, width, height)\n", + " x_min, y_min, x_max, y_max = box\n", + " x_center = (x_min + x_max) / 2 / w\n", + " y_center = (y_min + y_max) / 2 / h\n", + " width = (x_max - x_min) / w\n", + " height = (y_max - y_min) / h\n", + "\n", + " # Create the annotation file path\n", + " annotation_path = os.path.join(labels_folder, f\"{image_name}.txt\")\n", + " \n", + " # Write the YOLO format annotation\n", + " with open(annotation_path, 'w') as f:\n", + " # Write the class id and the normalized bounding box info\n", + " f.write(f\"{label} {x_center} {y_center} {width} {height}\\n\")\n", + " \n", + " print(f\"Saved annotation for {image_name}: {annotation_path}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [], + "source": [ + "cropped_data = [] # List to store cropped image data\n", + "\n", + "for result in results:\n", + " boxes = result.boxes\n", + " img_path = result.path\n", + " img = cv2.imread(img_path)\n", + "\n", + " for i, box in enumerate(boxes):\n", + " class_id = int(box.cls[0])\n", + " if class_id == 15: # Process only cats (class ID = 15 in COCO dataset)\n", + " x_min, y_min, x_max, y_max = map(int, box.xyxy[0])\n", + "\n", + " # Crop and save the image\n", + " cropped_cat = img[y_min:y_max, x_min:x_max]\n", + " crop_path = os.path.join(output_folder, f\"{os.path.basename(img_path).split('.')[0]}_crop{i}.jpg\")\n", + " cv2.imwrite(crop_path, cropped_cat)\n", + "\n", + " # Store metadata for this crop\n", + " cropped_data.append({\n", + " \"cropped_image\": crop_path,\n", + " \"original_image\": img_path,\n", + " \"bounding_box\": (x_min, y_min, x_max, y_max),\n", + " \"box_index\": i, # Index of the box in the original image\n", + " })" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [], + "source": [ + "feature_list = []\n", + "for data in cropped_data:\n", + " features = extract_features(data[\"cropped_image\"])\n", + " feature_list.append(features)" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "552\n", + "552\n" + ] + } + ], + "source": [ + "print(len(cropped_data))\n", + "print(len(feature_list))" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [], + "source": [ + "# Step 5: Clustering with K-Means\n", + "# Perform K-Means clustering on the extracted features\n", + "features_array = np.array(feature_list)\n", + "kmeans = KMeans(n_clusters=2, random_state=42) # 2 clusters for 2 cats\n", + "labels = kmeans.fit_predict(features_array)\n", + "\n", + "# Add cluster labels to `cropped_data`\n", + "for i, label in enumerate(labels):\n", + " cropped_data[i][\"cluster_label\"] = label " + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "# Step 6: Generate YOLO Annotations\n", + "# Group bounding boxes by original image and write YOLO format annotations\n", + "annotations = {}\n", + "\n", + "for data in cropped_data:\n", + " original_image = data[\"original_image\"]\n", + " box = data[\"bounding_box\"]\n", + " class_id = data[\"cluster_label\"] # Use cluster label as YOLO class ID\n", + "\n", + " # Calculate YOLO format (x_center, y_center, width, height)\n", + " x_min, y_min, x_max, y_max = box\n", + " img = cv2.imread(original_image)\n", + " h, w, _ = img.shape\n", + "\n", + " x_center = (x_min + x_max) / (2 * w)\n", + " y_center = (y_min + y_max) / (2 * h)\n", + " width = (x_max - x_min) / w\n", + " height = (y_max - y_min) / h\n", + "\n", + " # Add to annotations\n", + " if original_image not in annotations:\n", + " annotations[original_image] = []\n", + " annotations[original_image].append((class_id, x_center, y_center, width, height))" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\1818949000-IMG-20240118-WA0001.jpg to dataset/annotations/1818949000-IMG-20240118-WA0001.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_103335.jpg to dataset/annotations/20240308_103335.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_141622.jpg to dataset/annotations/20240308_141622.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_184600.jpg to dataset/annotations/20240308_184600.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_195833.jpg to dataset/annotations/20240308_195833.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_200052.jpg to dataset/annotations/20240308_200052.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_200057.jpg to dataset/annotations/20240308_200057.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_200102.jpg to dataset/annotations/20240308_200102.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201439.jpg to dataset/annotations/20240308_201439.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201442.jpg to dataset/annotations/20240308_201442.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201443.jpg to dataset/annotations/20240308_201443.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201446.jpg to dataset/annotations/20240308_201446.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201447.jpg to dataset/annotations/20240308_201447.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201448.jpg to dataset/annotations/20240308_201448.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201452.jpg to dataset/annotations/20240308_201452.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201454.jpg to dataset/annotations/20240308_201454.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201458.jpg to dataset/annotations/20240308_201458.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_201510.jpg to dataset/annotations/20240308_201510.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240308_232857.jpg to dataset/annotations/20240308_232857.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240310_140207.jpg to dataset/annotations/20240310_140207.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240311_195350.jpg to dataset/annotations/20240311_195350.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240311_195352.jpg to dataset/annotations/20240311_195352.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240311_195357.jpg to dataset/annotations/20240311_195357.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240311_195403.jpg to dataset/annotations/20240311_195403.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_180219.jpg to dataset/annotations/20240312_180219.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185655.jpg to dataset/annotations/20240312_185655.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185658.jpg to dataset/annotations/20240312_185658.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185700.jpg to dataset/annotations/20240312_185700.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185702.jpg to dataset/annotations/20240312_185702.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185718(0).jpg to dataset/annotations/20240312_185718(0).txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185718.jpg to dataset/annotations/20240312_185718.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185719.jpg to dataset/annotations/20240312_185719.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185729.jpg to dataset/annotations/20240312_185729.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185730.jpg to dataset/annotations/20240312_185730.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185733.jpg to dataset/annotations/20240312_185733.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240312_185734.jpg to dataset/annotations/20240312_185734.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240313_203246.jpg to dataset/annotations/20240313_203246.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240313_203248.jpg to dataset/annotations/20240313_203248.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_170048.jpg to dataset/annotations/20240315_170048.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_170048_remastered.jpg to dataset/annotations/20240315_170048_remastered.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_171004.jpg to dataset/annotations/20240315_171004.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_191222.jpg to dataset/annotations/20240315_191222.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_191224(0).jpg to dataset/annotations/20240315_191224(0).txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_191224.jpg to dataset/annotations/20240315_191224.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_191225.jpg to dataset/annotations/20240315_191225.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_191226.jpg to dataset/annotations/20240315_191226.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240315_191227.jpg to dataset/annotations/20240315_191227.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240316_104313.jpg to dataset/annotations/20240316_104313.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240316_104328.jpg to dataset/annotations/20240316_104328.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240316_104330.jpg to dataset/annotations/20240316_104330.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240316_104331.jpg to dataset/annotations/20240316_104331.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240316_220153.jpg to dataset/annotations/20240316_220153.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240316_220210.jpg to dataset/annotations/20240316_220210.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_002355.jpg to dataset/annotations/20240317_002355.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_002404.jpg to dataset/annotations/20240317_002404.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_002407.jpg to dataset/annotations/20240317_002407.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_002416.jpg to dataset/annotations/20240317_002416.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_002419.jpg to dataset/annotations/20240317_002419.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204422.jpg to dataset/annotations/20240317_204422.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204426.jpg to dataset/annotations/20240317_204426.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204429.jpg to dataset/annotations/20240317_204429.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204431.jpg to dataset/annotations/20240317_204431.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204434.jpg to dataset/annotations/20240317_204434.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204436.jpg to dataset/annotations/20240317_204436.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240317_204503.jpg to dataset/annotations/20240317_204503.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240318_194443.jpg to dataset/annotations/20240318_194443.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240320_171347.jpg to dataset/annotations/20240320_171347.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185912.jpg to dataset/annotations/20240323_185912.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185914.jpg to dataset/annotations/20240323_185914.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185916.jpg to dataset/annotations/20240323_185916.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185917.jpg to dataset/annotations/20240323_185917.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185921.jpg to dataset/annotations/20240323_185921.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185922.jpg to dataset/annotations/20240323_185922.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185924.jpg to dataset/annotations/20240323_185924.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_185950.jpg to dataset/annotations/20240323_185950.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_190014.jpg to dataset/annotations/20240323_190014.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_193424.jpg to dataset/annotations/20240323_193424.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_193431.jpg to dataset/annotations/20240323_193431.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240323_193433.jpg to dataset/annotations/20240323_193433.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240324_175352.jpg to dataset/annotations/20240324_175352.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240324_175354.jpg to dataset/annotations/20240324_175354.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240324_175358.jpg to dataset/annotations/20240324_175358.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240324_175402.jpg to dataset/annotations/20240324_175402.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240324_175405.jpg to dataset/annotations/20240324_175405.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240324_175406.jpg to dataset/annotations/20240324_175406.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240324_175407.jpg to dataset/annotations/20240324_175407.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240325_163728.jpg to dataset/annotations/20240325_163728.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240326_131427.jpg to dataset/annotations/20240326_131427.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240326_131431.jpg to dataset/annotations/20240326_131431.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240326_183749.jpg to dataset/annotations/20240326_183749.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240326_183757.jpg to dataset/annotations/20240326_183757.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240326_183759.jpg to dataset/annotations/20240326_183759.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240326_183803.jpg to dataset/annotations/20240326_183803.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240326_183810.jpg to dataset/annotations/20240326_183810.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240327_135547.jpg to dataset/annotations/20240327_135547.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240327_135550.jpg to dataset/annotations/20240327_135550.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240327_135553.jpg to dataset/annotations/20240327_135553.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240327_135555.jpg to dataset/annotations/20240327_135555.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240327_135643.jpg to dataset/annotations/20240327_135643.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240329_223942(0).jpg to dataset/annotations/20240329_223942(0).txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240329_223942.jpg to dataset/annotations/20240329_223942.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240329_223945.jpg to dataset/annotations/20240329_223945.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240404_224228.jpg to dataset/annotations/20240404_224228.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240404_224230.jpg to dataset/annotations/20240404_224230.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240404_224232.jpg to dataset/annotations/20240404_224232.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240404_224233.jpg to dataset/annotations/20240404_224233.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240404_224236.jpg to dataset/annotations/20240404_224236.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240404_224237.jpg to dataset/annotations/20240404_224237.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240404_224242.jpg to dataset/annotations/20240404_224242.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240405_152307.jpg to dataset/annotations/20240405_152307.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240405_152308.jpg to dataset/annotations/20240405_152308.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240405_152310.jpg to dataset/annotations/20240405_152310.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240405_152316.jpg to dataset/annotations/20240405_152316.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240405_152338.jpg to dataset/annotations/20240405_152338.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240405_152341.jpg to dataset/annotations/20240405_152341.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233500.jpg to dataset/annotations/20240413_233500.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233501.jpg to dataset/annotations/20240413_233501.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233502.jpg to dataset/annotations/20240413_233502.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233503.jpg to dataset/annotations/20240413_233503.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233504.jpg to dataset/annotations/20240413_233504.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233505.jpg to dataset/annotations/20240413_233505.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233506.jpg to dataset/annotations/20240413_233506.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_233600.jpg to dataset/annotations/20240413_233600.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234112.jpg to dataset/annotations/20240413_234112.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234115.jpg to dataset/annotations/20240413_234115.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234507.jpg to dataset/annotations/20240413_234507.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234510.jpg to dataset/annotations/20240413_234510.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234512.jpg to dataset/annotations/20240413_234512.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234514.jpg to dataset/annotations/20240413_234514.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234520.jpg to dataset/annotations/20240413_234520.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234523.jpg to dataset/annotations/20240413_234523.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234524.jpg to dataset/annotations/20240413_234524.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234630.jpg to dataset/annotations/20240413_234630.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_234749.jpg to dataset/annotations/20240413_234749.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240413_235449.jpg to dataset/annotations/20240413_235449.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240414_204832.jpg to dataset/annotations/20240414_204832.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240415_191936.jpg to dataset/annotations/20240415_191936.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240416_131400.jpg to dataset/annotations/20240416_131400.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240423_103248.jpg to dataset/annotations/20240423_103248.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240424_204037.jpg to dataset/annotations/20240424_204037.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240425_224816.jpg to dataset/annotations/20240425_224816.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240425_224817(0).jpg to dataset/annotations/20240425_224817(0).txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240425_224817.jpg to dataset/annotations/20240425_224817.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240425_224819.jpg to dataset/annotations/20240425_224819.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240426_133718.jpg to dataset/annotations/20240426_133718.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240426_133720.jpg to dataset/annotations/20240426_133720.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240427_113516.jpg to dataset/annotations/20240427_113516.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240427_113519.jpg to dataset/annotations/20240427_113519.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240427_130031.jpg to dataset/annotations/20240427_130031.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240427_130032.jpg to dataset/annotations/20240427_130032.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240427_130041.jpg to dataset/annotations/20240427_130041.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240503_173937.jpg to dataset/annotations/20240503_173937.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240503_173948.jpg to dataset/annotations/20240503_173948.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240509_185557.jpg to dataset/annotations/20240509_185557.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240509_185559.jpg to dataset/annotations/20240509_185559.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240509_185601.jpg to dataset/annotations/20240509_185601.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240509_185604.jpg to dataset/annotations/20240509_185604.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240509_185606.jpg to dataset/annotations/20240509_185606.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240509_185608.jpg to dataset/annotations/20240509_185608.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240509_185612.jpg to dataset/annotations/20240509_185612.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240511_185650.jpg to dataset/annotations/20240511_185650.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240511_185651.jpg to dataset/annotations/20240511_185651.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240511_185652.jpg to dataset/annotations/20240511_185652.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240511_194053.jpg to dataset/annotations/20240511_194053.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240511_210228.jpg to dataset/annotations/20240511_210228.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_071046.jpg to dataset/annotations/20240512_071046.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_071050.jpg to dataset/annotations/20240512_071050.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_071052.jpg to dataset/annotations/20240512_071052.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_071053.jpg to dataset/annotations/20240512_071053.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_072915.jpg to dataset/annotations/20240512_072915.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_231919.jpg to dataset/annotations/20240512_231919.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_231920.jpg to dataset/annotations/20240512_231920.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_235311.jpg to dataset/annotations/20240512_235311.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_235315.jpg to dataset/annotations/20240512_235315.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240512_235317.jpg to dataset/annotations/20240512_235317.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_090846.jpg to dataset/annotations/20240513_090846.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_090900.jpg to dataset/annotations/20240513_090900.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_090907.jpg to dataset/annotations/20240513_090907.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_090911.jpg to dataset/annotations/20240513_090911.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180307.jpg to dataset/annotations/20240513_180307.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180310.jpg to dataset/annotations/20240513_180310.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180316.jpg to dataset/annotations/20240513_180316.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180318.jpg to dataset/annotations/20240513_180318.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180331.jpg to dataset/annotations/20240513_180331.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180334.jpg to dataset/annotations/20240513_180334.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180532.jpg to dataset/annotations/20240513_180532.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180847.jpg to dataset/annotations/20240513_180847.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180849.jpg to dataset/annotations/20240513_180849.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180853.jpg to dataset/annotations/20240513_180853.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180937.jpg to dataset/annotations/20240513_180937.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240513_180939.jpg to dataset/annotations/20240513_180939.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240514_193135.jpg to dataset/annotations/20240514_193135.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240514_193136.jpg to dataset/annotations/20240514_193136.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240514_213919(0).jpg to dataset/annotations/20240514_213919(0).txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240514_213919.jpg to dataset/annotations/20240514_213919.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240514_223849.jpg to dataset/annotations/20240514_223849.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240514_223851.jpg to dataset/annotations/20240514_223851.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240603_225020(0).jpg to dataset/annotations/20240603_225020(0).txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240603_225020.jpg to dataset/annotations/20240603_225020.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192457.jpg to dataset/annotations/20240611_192457.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192458(0).jpg to dataset/annotations/20240611_192458(0).txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192458.jpg to dataset/annotations/20240611_192458.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192459(0).jpg to dataset/annotations/20240611_192459(0).txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192459.jpg to dataset/annotations/20240611_192459.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192501(0).jpg to dataset/annotations/20240611_192501(0).txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192501.jpg to dataset/annotations/20240611_192501.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192502(0).jpg to dataset/annotations/20240611_192502(0).txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192502.jpg to dataset/annotations/20240611_192502.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192503.jpg to dataset/annotations/20240611_192503.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192504.jpg to dataset/annotations/20240611_192504.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192505.jpg to dataset/annotations/20240611_192505.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192506.jpg to dataset/annotations/20240611_192506.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192508.jpg to dataset/annotations/20240611_192508.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192509.jpg to dataset/annotations/20240611_192509.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192512(0).jpg to dataset/annotations/20240611_192512(0).txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192513.jpg to dataset/annotations/20240611_192513.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192514.jpg to dataset/annotations/20240611_192514.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192515(0).jpg to dataset/annotations/20240611_192515(0).txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192515.jpg to dataset/annotations/20240611_192515.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192533.jpg to dataset/annotations/20240611_192533.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192534(0).jpg to dataset/annotations/20240611_192534(0).txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192534.jpg to dataset/annotations/20240611_192534.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192535.jpg to dataset/annotations/20240611_192535.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192537.jpg to dataset/annotations/20240611_192537.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192538(0).jpg to dataset/annotations/20240611_192538(0).txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192538.jpg to dataset/annotations/20240611_192538.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192539(0).jpg to dataset/annotations/20240611_192539(0).txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192539.jpg to dataset/annotations/20240611_192539.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192542.jpg to dataset/annotations/20240611_192542.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240611_192544.jpg to dataset/annotations/20240611_192544.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240618_205057.jpg to dataset/annotations/20240618_205057.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240618_205103.jpg to dataset/annotations/20240618_205103.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240618_205105.jpg to dataset/annotations/20240618_205105.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240618_205110.jpg to dataset/annotations/20240618_205110.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240618_205113.jpg to dataset/annotations/20240618_205113.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240618_205119.jpg to dataset/annotations/20240618_205119.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240618_205121.jpg to dataset/annotations/20240618_205121.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240623_192721.jpg to dataset/annotations/20240623_192721.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240624_200545.jpg to dataset/annotations/20240624_200545.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240624_200548.jpg to dataset/annotations/20240624_200548.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240624_200549.jpg to dataset/annotations/20240624_200549.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_012349.jpg to dataset/annotations/20240628_012349.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_012352.jpg to dataset/annotations/20240628_012352.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_012400.jpg to dataset/annotations/20240628_012400.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_012402.jpg to dataset/annotations/20240628_012402.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_012407.jpg to dataset/annotations/20240628_012407.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_012408.jpg to dataset/annotations/20240628_012408.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_231410.jpg to dataset/annotations/20240628_231410.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_231412.jpg to dataset/annotations/20240628_231412.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240628_231413.jpg to dataset/annotations/20240628_231413.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240704_202652.jpg to dataset/annotations/20240704_202652.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240711_221427.jpg to dataset/annotations/20240711_221427.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240711_221435.jpg to dataset/annotations/20240711_221435.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165019.jpg to dataset/annotations/20240720_165019.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165021.jpg to dataset/annotations/20240720_165021.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165025.jpg to dataset/annotations/20240720_165025.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165028.jpg to dataset/annotations/20240720_165028.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165029.jpg to dataset/annotations/20240720_165029.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165031.jpg to dataset/annotations/20240720_165031.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165033.jpg to dataset/annotations/20240720_165033.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_165040.jpg to dataset/annotations/20240720_165040.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_224858.jpg to dataset/annotations/20240720_224858.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_224902.jpg to dataset/annotations/20240720_224902.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_224903.jpg to dataset/annotations/20240720_224903.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240720_224905.jpg to dataset/annotations/20240720_224905.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240726_225449.jpg to dataset/annotations/20240726_225449.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240727_085826.jpg to dataset/annotations/20240727_085826.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240802_203206.jpg to dataset/annotations/20240802_203206.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102342.jpg to dataset/annotations/20240816_102342.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102347.jpg to dataset/annotations/20240816_102347.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102351.jpg to dataset/annotations/20240816_102351.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102354.jpg to dataset/annotations/20240816_102354.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102402.jpg to dataset/annotations/20240816_102402.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102407.jpg to dataset/annotations/20240816_102407.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102411.jpg to dataset/annotations/20240816_102411.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_102415.jpg to dataset/annotations/20240816_102415.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240816_113806.jpg to dataset/annotations/20240816_113806.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_145117.jpg to dataset/annotations/20240817_145117.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_145118.jpg to dataset/annotations/20240817_145118.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_171056.jpg to dataset/annotations/20240817_171056.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_171058.jpg to dataset/annotations/20240817_171058.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_171104.jpg to dataset/annotations/20240817_171104.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_171110.jpg to dataset/annotations/20240817_171110.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_171111.jpg to dataset/annotations/20240817_171111.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_203211.jpg to dataset/annotations/20240817_203211.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_203213.jpg to dataset/annotations/20240817_203213.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_203217.jpg to dataset/annotations/20240817_203217.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240817_203219.jpg to dataset/annotations/20240817_203219.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_164652.jpg to dataset/annotations/20240819_164652.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_164655.jpg to dataset/annotations/20240819_164655.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_171436.jpg to dataset/annotations/20240819_171436.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_171438.jpg to dataset/annotations/20240819_171438.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_171443.jpg to dataset/annotations/20240819_171443.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_173348.jpg to dataset/annotations/20240819_173348.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_173355.jpg to dataset/annotations/20240819_173355.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_173426.jpg to dataset/annotations/20240819_173426.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211309.jpg to dataset/annotations/20240819_211309.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211312.jpg to dataset/annotations/20240819_211312.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211313.jpg to dataset/annotations/20240819_211313.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211320.jpg to dataset/annotations/20240819_211320.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211321.jpg to dataset/annotations/20240819_211321.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211322.jpg to dataset/annotations/20240819_211322.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211330.jpg to dataset/annotations/20240819_211330.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240819_211333.jpg to dataset/annotations/20240819_211333.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240820_144924.jpg to dataset/annotations/20240820_144924.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240820_145200.jpg to dataset/annotations/20240820_145200.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_144759.jpg to dataset/annotations/20240826_144759.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_144801.jpg to dataset/annotations/20240826_144801.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_144806.jpg to dataset/annotations/20240826_144806.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_144808.jpg to dataset/annotations/20240826_144808.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_144935.jpg to dataset/annotations/20240826_144935.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145214.jpg to dataset/annotations/20240826_145214.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145834.jpg to dataset/annotations/20240826_145834.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145836.jpg to dataset/annotations/20240826_145836.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145837.jpg to dataset/annotations/20240826_145837.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145839.jpg to dataset/annotations/20240826_145839.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145844.jpg to dataset/annotations/20240826_145844.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145846.jpg to dataset/annotations/20240826_145846.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_145849.jpg to dataset/annotations/20240826_145849.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_150807.jpg to dataset/annotations/20240826_150807.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_150810.jpg to dataset/annotations/20240826_150810.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_150813.jpg to dataset/annotations/20240826_150813.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_150852.jpg to dataset/annotations/20240826_150852.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_152201.jpg to dataset/annotations/20240826_152201.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_152205.jpg to dataset/annotations/20240826_152205.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_152211.jpg to dataset/annotations/20240826_152211.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240826_152212.jpg to dataset/annotations/20240826_152212.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240827_224300.jpg to dataset/annotations/20240827_224300.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240827_224303.jpg to dataset/annotations/20240827_224303.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240828_102222.jpg to dataset/annotations/20240828_102222.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240828_102229.jpg to dataset/annotations/20240828_102229.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240903_211802.jpg to dataset/annotations/20240903_211802.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240903_211803.jpg to dataset/annotations/20240903_211803.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240903_211811.jpg to dataset/annotations/20240903_211811.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240903_211818.jpg to dataset/annotations/20240903_211818.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240903_211821.jpg to dataset/annotations/20240903_211821.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240907_115059.jpg to dataset/annotations/20240907_115059.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240907_115105.jpg to dataset/annotations/20240907_115105.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240907_115118.jpg to dataset/annotations/20240907_115118.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240908_190713.jpg to dataset/annotations/20240908_190713.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240908_190829.jpg to dataset/annotations/20240908_190829.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240908_194737.jpg to dataset/annotations/20240908_194737.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240908_194739.jpg to dataset/annotations/20240908_194739.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240908_194752.jpg to dataset/annotations/20240908_194752.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240909_000642.jpg to dataset/annotations/20240909_000642.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240909_000646.jpg to dataset/annotations/20240909_000646.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124611.jpg to dataset/annotations/20240910_124611.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124612.jpg to dataset/annotations/20240910_124612.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124720.jpg to dataset/annotations/20240910_124720.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124723.jpg to dataset/annotations/20240910_124723.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124734.jpg to dataset/annotations/20240910_124734.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124738.jpg to dataset/annotations/20240910_124738.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240910_124741.jpg to dataset/annotations/20240910_124741.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091314.jpg to dataset/annotations/20240911_091314.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091319.jpg to dataset/annotations/20240911_091319.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091320.jpg to dataset/annotations/20240911_091320.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091322.jpg to dataset/annotations/20240911_091322.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091323.jpg to dataset/annotations/20240911_091323.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091329.jpg to dataset/annotations/20240911_091329.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091845.jpg to dataset/annotations/20240911_091845.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091846.jpg to dataset/annotations/20240911_091846.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091848.jpg to dataset/annotations/20240911_091848.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091850.jpg to dataset/annotations/20240911_091850.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091852.jpg to dataset/annotations/20240911_091852.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091859.jpg to dataset/annotations/20240911_091859.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091902.jpg to dataset/annotations/20240911_091902.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_091905.jpg to dataset/annotations/20240911_091905.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_193740.jpg to dataset/annotations/20240911_193740.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240911_193742.jpg to dataset/annotations/20240911_193742.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_174204.jpg to dataset/annotations/20240912_174204.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_174614.jpg to dataset/annotations/20240912_174614.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_174616.jpg to dataset/annotations/20240912_174616.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_174636.jpg to dataset/annotations/20240912_174636.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_215106.jpg to dataset/annotations/20240912_215106.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_215113.jpg to dataset/annotations/20240912_215113.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240912_215119.jpg to dataset/annotations/20240912_215119.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240920_192026.jpg to dataset/annotations/20240920_192026.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240924_111824.jpg to dataset/annotations/20240924_111824.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240924_111829.jpg to dataset/annotations/20240924_111829.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240924_111831.jpg to dataset/annotations/20240924_111831.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162434.jpg to dataset/annotations/20240926_162434.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162437.jpg to dataset/annotations/20240926_162437.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162442.jpg to dataset/annotations/20240926_162442.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162443.jpg to dataset/annotations/20240926_162443.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162445.jpg to dataset/annotations/20240926_162445.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162452.jpg to dataset/annotations/20240926_162452.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162458.jpg to dataset/annotations/20240926_162458.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162500.jpg to dataset/annotations/20240926_162500.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240926_162503.jpg to dataset/annotations/20240926_162503.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240929_100748.jpg to dataset/annotations/20240929_100748.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240929_101009.jpg to dataset/annotations/20240929_101009.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240929_101014.jpg to dataset/annotations/20240929_101014.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240929_101016.jpg to dataset/annotations/20240929_101016.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240929_184523.jpg to dataset/annotations/20240929_184523.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20240930_151259.jpg to dataset/annotations/20240930_151259.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241002_212916.jpg to dataset/annotations/20241002_212916.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241002_212925.jpg to dataset/annotations/20241002_212925.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241002_212949.jpg to dataset/annotations/20241002_212949.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241004_112619.jpg to dataset/annotations/20241004_112619.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241004_112626.jpg to dataset/annotations/20241004_112626.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241008_094705.jpg to dataset/annotations/20241008_094705.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241008_094939.jpg to dataset/annotations/20241008_094939.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241008_094940.jpg to dataset/annotations/20241008_094940.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241009_121558.jpg to dataset/annotations/20241009_121558.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241013_191519.jpg to dataset/annotations/20241013_191519.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241013_191520.jpg to dataset/annotations/20241013_191520.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241013_191523.jpg to dataset/annotations/20241013_191523.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241013_191525.jpg to dataset/annotations/20241013_191525.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241013_191527.jpg to dataset/annotations/20241013_191527.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241013_191529.jpg to dataset/annotations/20241013_191529.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241017_132210.jpg to dataset/annotations/20241017_132210.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241017_132216.jpg to dataset/annotations/20241017_132216.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241017_184948.jpg to dataset/annotations/20241017_184948.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241017_184949.jpg to dataset/annotations/20241017_184949.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241022_023307.jpg to dataset/annotations/20241022_023307.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241024_134452.jpg to dataset/annotations/20241024_134452.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241101_145241.jpg to dataset/annotations/20241101_145241.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241115_195434.jpg to dataset/annotations/20241115_195434.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241115_195439.jpg to dataset/annotations/20241115_195439.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241115_200624.jpg to dataset/annotations/20241115_200624.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241115_200626.jpg to dataset/annotations/20241115_200626.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241124_220257.jpg to dataset/annotations/20241124_220257.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241124_220259.jpg to dataset/annotations/20241124_220259.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241206_164037.jpg to dataset/annotations/20241206_164037.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241206_164040.jpg to dataset/annotations/20241206_164040.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241217_102418.jpg to dataset/annotations/20241217_102418.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241222_132045.jpg to dataset/annotations/20241222_132045.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241222_132051.jpg to dataset/annotations/20241222_132051.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241222_132058.jpg to dataset/annotations/20241222_132058.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241222_132101.jpg to dataset/annotations/20241222_132101.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241222_132106.jpg to dataset/annotations/20241222_132106.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_130054.jpg to dataset/annotations/20241225_130054.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_134500.jpg to dataset/annotations/20241225_134500.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_134627.jpg to dataset/annotations/20241225_134627.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135201.jpg to dataset/annotations/20241225_135201.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135219.jpg to dataset/annotations/20241225_135219.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135343(0).jpg to dataset/annotations/20241225_135343(0).txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135343.jpg to dataset/annotations/20241225_135343.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135345.jpg to dataset/annotations/20241225_135345.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135347.jpg to dataset/annotations/20241225_135347.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135352.jpg to dataset/annotations/20241225_135352.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135354.jpg to dataset/annotations/20241225_135354.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135710.jpg to dataset/annotations/20241225_135710.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241225_135712.jpg to dataset/annotations/20241225_135712.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241227_150819.jpg to dataset/annotations/20241227_150819.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20241227_150826.jpg to dataset/annotations/20241227_150826.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250105_143721.jpg to dataset/annotations/20250105_143721.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250105_143723.jpg to dataset/annotations/20250105_143723.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250105_143727.jpg to dataset/annotations/20250105_143727.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250112_203850.jpg to dataset/annotations/20250112_203850.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250112_203857.jpg to dataset/annotations/20250112_203857.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250112_203858.jpg to dataset/annotations/20250112_203858.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250116_174816.jpg to dataset/annotations/20250116_174816.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250117_172955.jpg to dataset/annotations/20250117_172955.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250120_225956.jpg to dataset/annotations/20250120_225956.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250121_190039.jpg to dataset/annotations/20250121_190039.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250121_190043.jpg to dataset/annotations/20250121_190043.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250122_142944.jpg to dataset/annotations/20250122_142944.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250122_142946.jpg to dataset/annotations/20250122_142946.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250122_142948.jpg to dataset/annotations/20250122_142948.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250122_142949.jpg to dataset/annotations/20250122_142949.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250122_142953.jpg to dataset/annotations/20250122_142953.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\20250122_142958.jpg to dataset/annotations/20250122_142958.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\IMG_20240318_231934_252.webp to dataset/annotations/IMG_20240318_231934_252.txt\n", + "Saved YOLO annotation for e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\cats\\IMG_20241207_211456_238.jpg to dataset/annotations/IMG_20241207_211456_238.txt\n" + ] + } + ], + "source": [ + "annotations_folder = 'dataset/annotations/' \n", + "# Save YOLO annotations to files\n", + "for original_image, boxes in annotations.items():\n", + " annotation_file = os.path.join(annotations_folder, f\"{os.path.basename(original_image).split('.')[0]}.txt\")\n", + " with open(annotation_file, \"w\") as f:\n", + " for class_id, x_center, y_center, width, height in boxes:\n", + " f.write(f\"{class_id} {x_center} {y_center} {width} {height}\\n\")\n", + " print(f\"Saved YOLO annotation for {original_image} to {annotation_file}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "import shutil\n", + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "# Define the paths\n", + "original_images_path = \"dataset/Cats\"\n", + "original_annotations_path = \"dataset/annotations\"\n", + "\n", + "# Define the YOLO structure paths\n", + "output_images_train = \"dataset/images/train\"\n", + "output_images_val = \"dataset/images/val\"\n", + "output_labels_train = \"dataset/labels/train\"\n", + "output_labels_val = \"dataset/labels/val\"\n", + "\n", + "# Create YOLO directory structure\n", + "os.makedirs(output_images_train, exist_ok=True)\n", + "os.makedirs(output_images_val, exist_ok=True)\n", + "os.makedirs(output_labels_train, exist_ok=True)\n", + "os.makedirs(output_labels_val, exist_ok=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [], + "source": [ + "# Get all image and annotation files\n", + "images = {os.path.splitext(f)[0]: f for f in os.listdir(original_images_path)}\n", + "annotations = {os.path.splitext(f)[0]: f for f in os.listdir(original_annotations_path) if f.endswith(\".txt\")}\n", + "\n", + "# Match images to their annotations (by base name)\n", + "matched_files = [(images[key], annotations[key]) for key in images if key in annotations]\n", + "\n", + "if not matched_files:\n", + " raise ValueError(\"No matching images and annotations found!\")" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "558\n", + "465\n", + "465\n" + ] + } + ], + "source": [ + "print(len(images))\n", + "print(len(annotations))\n", + "print(len(matched_files))" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [], + "source": [ + "# Split into train and validation sets\n", + "train_files, val_files = train_test_split(matched_files, test_size=0.2, random_state=42)" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [], + "source": [ + "# Function to copy files\n", + "def copy_files(file_pairs, src_image_folder, src_label_folder, dest_image_folder, dest_label_folder):\n", + " for img_file, ann_file in file_pairs:\n", + " # Copy image\n", + " shutil.copy(os.path.join(src_image_folder, img_file), os.path.join(dest_image_folder, img_file))\n", + " # Copy annotation\n", + " shutil.copy(os.path.join(src_label_folder, ann_file), os.path.join(dest_label_folder, ann_file))\n", + "\n", + "# Copy training files\n", + "copy_files(train_files, original_images_path, original_annotations_path, output_images_train, output_labels_train)\n", + "\n", + "# Copy validation files\n", + "copy_files(val_files, original_images_path, original_annotations_path, output_images_val, output_labels_val)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[34m\u001b[1mengine\\trainer: \u001b[0mtask=detect, mode=train, model=yolov8n.pt, data=cats_dataset.yaml, epochs=50, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=cuda:0, workers=4, project=None, name=cat_detection, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=None, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs\\detect\\cat_detection\n", + "Downloading https://ultralytics.com/assets/Arial.ttf to 'C:\\Users\\danie\\AppData\\Roaming\\Ultralytics\\Arial.ttf'...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 755k/755k [00:00<00:00, 4.81MB/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Overriding model.yaml nc=80 with nc=2\n", + "\n", + " from n params module arguments \n", + " 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] \n", + " 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] \n", + " 2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True] \n", + " 3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] \n", + " 4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True] \n", + " 5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] \n", + " 6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] \n", + " 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] \n", + " 8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True] \n", + " 9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] \n", + " 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", + " 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", + " 12 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1] \n", + " 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", + " 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", + " 15 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1] \n", + " 16 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] \n", + " 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", + " 18 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1] \n", + " 19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] \n", + " 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", + " 21 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1] \n", + " 22 [15, 18, 21] 1 751702 ultralytics.nn.modules.head.Detect [2, [64, 128, 256]] \n", + "Model summary: 225 layers, 3,011,238 parameters, 3,011,222 gradients, 8.2 GFLOPs\n", + "\n", + "Transferred 58/355 items from pretrained weights\n", + "Freezing layer 'model.22.dfl.conv.weight'\n", + "\u001b[34m\u001b[1mAMP: \u001b[0mrunning Automatic Mixed Precision (AMP) checks...\n", + "Downloading https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt to 'yolo11n.pt'...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 5.35M/5.35M [00:00<00:00, 10.1MB/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[34m\u001b[1mtrain: \u001b[0mScanning E:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\labels\\train... 372 images, 0 backgrounds, 0 corrupt: 100%|██████████| 372/372 [00:01<00:00, 228.09it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: E:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\labels\\train.cache\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "\u001b[34m\u001b[1mval: \u001b[0mScanning E:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\labels\\val... 93 images, 0 backgrounds, 0 corrupt: 100%|██████████| 93/93 [00:00<00:00, 254.11it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: E:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\labels\\val.cache\n", + "Plotting labels to runs\\detect\\cat_detection\\labels.jpg... \n", + "\u001b[34m\u001b[1moptimizer:\u001b[0m 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically... \n", + "\u001b[34m\u001b[1moptimizer:\u001b[0m AdamW(lr=0.001667, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)\n", + "Image sizes 640 train, 640 val\n", + "Using 4 dataloader workers\n", + "Logging results to \u001b[1mruns\\detect\\cat_detection\u001b[0m\n", + "Starting training for 50 epochs...\n", + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 1/50 2.12G 2.55 3.182 2.512 11 640: 100%|██████████| 24/24 [00:26<00:00, 1.12s/it]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:14<00:00, 4.91s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.00543 0.609 0.0607 0.0157\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 2/50 2.12G 1.583 2.203 1.865 15 640: 100%|██████████| 24/24 [00:27<00:00, 1.15s/it]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 1.84it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.359 0.319 0.215 0.0701\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 3/50 2.11G 1.384 1.862 1.708 6 640: 100%|██████████| 24/24 [00:24<00:00, 1.02s/it]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:02<00:00, 1.38it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.625 0.554 0.586 0.319\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 4/50 2.12G 1.241 1.65 1.58 13 640: 100%|██████████| 24/24 [00:21<00:00, 1.13it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:02<00:00, 1.07it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.706 0.697 0.769 0.517\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 5/50 2.12G 1.128 1.559 1.515 15 640: 100%|██████████| 24/24 [00:24<00:00, 1.01s/it]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:03<00:00, 1.15s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.826 0.689 0.836 0.49\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 6/50 2.12G 1.053 1.361 1.438 10 640: 100%|██████████| 24/24 [00:24<00:00, 1.01s/it]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.09it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.816 0.691 0.824 0.556\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 7/50 2.12G 1.051 1.384 1.445 12 640: 100%|██████████| 24/24 [00:20<00:00, 1.15it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 1.75it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.8 0.693 0.792 0.49\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 8/50 2.12G 1.013 1.359 1.419 9 640: 100%|██████████| 24/24 [00:19<00:00, 1.23it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.22it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.828 0.711 0.865 0.627\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 9/50 2.12G 0.9147 1.245 1.348 6 640: 100%|██████████| 24/24 [00:17<00:00, 1.36it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.37it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.851 0.777 0.877 0.616\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 10/50 2.14G 0.868 1.111 1.302 12 640: 100%|██████████| 24/24 [00:19<00:00, 1.23it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.39it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.795 0.842 0.874 0.642\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 11/50 2.12G 0.8797 1.055 1.339 8 640: 100%|██████████| 24/24 [00:17<00:00, 1.40it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.38it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.874 0.776 0.857 0.657\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 12/50 2.12G 0.9213 1.084 1.343 9 640: 100%|██████████| 24/24 [00:16<00:00, 1.41it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.21it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.904 0.804 0.898 0.696\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 13/50 2.13G 0.8823 1.049 1.31 15 640: 100%|██████████| 24/24 [00:17<00:00, 1.38it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.26it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.89 0.848 0.911 0.686\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 14/50 2.12G 0.812 0.9593 1.299 10 640: 100%|██████████| 24/24 [00:18<00:00, 1.33it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.53it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.914 0.855 0.928 0.715\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 15/50 2.12G 0.7952 0.9617 1.269 14 640: 100%|██████████| 24/24 [00:17<00:00, 1.34it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.24it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.846 0.883 0.901 0.683\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 16/50 2.12G 0.8631 0.9607 1.313 8 640: 100%|██████████| 24/24 [00:18<00:00, 1.32it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.51it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.886 0.824 0.899 0.706\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 17/50 2.12G 0.8555 0.9272 1.308 12 640: 100%|██████████| 24/24 [00:18<00:00, 1.29it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.31it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.88 0.783 0.892 0.671\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 18/50 2.12G 0.8447 0.9193 1.283 8 640: 100%|██████████| 24/24 [00:20<00:00, 1.18it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.13it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.842 0.809 0.869 0.642\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 19/50 2.12G 0.8271 0.8759 1.28 13 640: 100%|██████████| 24/24 [00:17<00:00, 1.35it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.16it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.763 0.777 0.86 0.673\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 20/50 2.12G 0.7735 0.8702 1.233 15 640: 100%|██████████| 24/24 [00:24<00:00, 1.01s/it]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.42it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.925 0.875 0.915 0.735\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 21/50 2.12G 0.7427 0.8364 1.233 9 640: 100%|██████████| 24/24 [00:17<00:00, 1.35it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.21it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.896 0.87 0.912 0.718\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 22/50 2.12G 0.7543 0.8537 1.239 5 640: 100%|██████████| 24/24 [00:20<00:00, 1.16it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.36it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.905 0.754 0.88 0.711\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 23/50 2.12G 0.7352 0.7998 1.201 11 640: 100%|██████████| 24/24 [00:17<00:00, 1.37it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.35it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.94 0.791 0.89 0.696\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 24/50 2.12G 0.7194 0.7901 1.204 12 640: 100%|██████████| 24/24 [00:18<00:00, 1.28it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.03it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.92 0.797 0.903 0.706\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 25/50 2.14G 0.7551 0.798 1.241 8 640: 100%|██████████| 24/24 [00:16<00:00, 1.46it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.66it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.942 0.812 0.919 0.724\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 26/50 2.12G 0.6898 0.7524 1.172 10 640: 100%|██████████| 24/24 [00:18<00:00, 1.33it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.42it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.907 0.861 0.917 0.734\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 27/50 2.14G 0.708 0.7433 1.2 10 640: 100%|██████████| 24/24 [00:16<00:00, 1.47it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.60it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.951 0.826 0.907 0.7\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 28/50 2.12G 0.6944 0.712 1.178 15 640: 100%|██████████| 24/24 [00:16<00:00, 1.43it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.56it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.95 0.865 0.933 0.758\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 29/50 2.12G 0.6836 0.7271 1.179 10 640: 100%|██████████| 24/24 [00:16<00:00, 1.44it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.48it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.945 0.822 0.924 0.749\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 30/50 2.12G 0.6917 0.7292 1.173 19 640: 100%|██████████| 24/24 [00:16<00:00, 1.44it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.46it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.91 0.871 0.937 0.762\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 31/50 2.12G 0.6682 0.6691 1.172 12 640: 100%|██████████| 24/24 [00:16<00:00, 1.42it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.51it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.953 0.825 0.935 0.773\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 32/50 2.12G 0.6513 0.6866 1.161 7 640: 100%|██████████| 24/24 [00:18<00:00, 1.29it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.58it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.936 0.795 0.92 0.747\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 33/50 2.12G 0.6368 0.6484 1.141 10 640: 100%|██████████| 24/24 [00:18<00:00, 1.26it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.62it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.923 0.897 0.943 0.789\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 34/50 2.12G 0.6621 0.6853 1.16 9 640: 100%|██████████| 24/24 [00:17<00:00, 1.37it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.43it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.963 0.855 0.952 0.784\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 35/50 2.12G 0.6457 0.6538 1.15 12 640: 100%|██████████| 24/24 [00:17<00:00, 1.41it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.59it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.977 0.859 0.953 0.781\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 36/50 2.12G 0.6003 0.631 1.122 6 640: 100%|██████████| 24/24 [00:15<00:00, 1.54it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.57it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.9 0.881 0.943 0.769\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 37/50 2.14G 0.6187 0.6117 1.127 12 640: 100%|██████████| 24/24 [00:17<00:00, 1.36it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.56it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.951 0.854 0.947 0.779\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 38/50 2.12G 0.6241 0.6498 1.134 12 640: 100%|██████████| 24/24 [00:17<00:00, 1.36it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.63it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.974 0.833 0.939 0.778\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 39/50 2.12G 0.5996 0.6259 1.129 7 640: 100%|██████████| 24/24 [00:17<00:00, 1.40it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.45it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.933 0.872 0.927 0.778\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 40/50 2.13G 0.6037 0.6171 1.111 18 640: 100%|██████████| 24/24 [00:16<00:00, 1.43it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.33it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.966 0.854 0.939 0.79\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Closing dataloader mosaic\n", + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 41/50 2.29G 0.5032 0.6274 1.075 4 640: 100%|██████████| 24/24 [00:23<00:00, 1.01it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.33it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.977 0.809 0.908 0.733\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 42/50 2.12G 0.4643 0.5305 1.015 5 640: 100%|██████████| 24/24 [00:16<00:00, 1.43it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.57it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.95 0.867 0.946 0.773\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 43/50 2.12G 0.454 0.5091 1.022 4 640: 100%|██████████| 24/24 [00:16<00:00, 1.43it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.25it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.955 0.881 0.944 0.792\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 44/50 2.12G 0.4417 0.4678 0.9788 7 640: 100%|██████████| 24/24 [00:16<00:00, 1.49it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.46it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.915 0.893 0.94 0.794\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 45/50 2.12G 0.4204 0.4607 0.9959 4 640: 100%|██████████| 24/24 [00:16<00:00, 1.47it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.34it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.914 0.898 0.947 0.796\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 46/50 2.12G 0.4066 0.4481 0.9655 6 640: 100%|██████████| 24/24 [00:15<00:00, 1.55it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.60it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.932 0.873 0.951 0.801\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 47/50 2.12G 0.4039 0.4364 0.9661 4 640: 100%|██████████| 24/24 [00:19<00:00, 1.24it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:02<00:00, 1.12it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.941 0.885 0.948 0.797\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 48/50 2.12G 0.3837 0.409 0.9691 5 640: 100%|██████████| 24/24 [00:20<00:00, 1.16it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.29it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.937 0.891 0.946 0.799\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 49/50 2.12G 0.4021 0.4534 0.9938 4 640: 100%|██████████| 24/24 [00:16<00:00, 1.44it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.32it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.939 0.897 0.947 0.8\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 50/50 2.12G 0.4031 0.425 0.9895 6 640: 100%|██████████| 24/24 [00:14<00:00, 1.61it/s]\n", + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 2.59it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.943 0.897 0.951 0.802\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "50 epochs completed in 0.383 hours.\n", + "Optimizer stripped from runs\\detect\\cat_detection\\weights\\last.pt, 6.2MB\n", + "Optimizer stripped from runs\\detect\\cat_detection\\weights\\best.pt, 6.2MB\n", + "\n", + "Validating runs\\detect\\cat_detection\\weights\\best.pt...\n", + "Ultralytics 8.3.65 Python-3.10.9 torch-2.5.1+cu124 CUDA:0 (NVIDIA GeForce RTX 4060 Ti, 8187MiB)\n", + "Model summary (fused): 168 layers, 3,006,038 parameters, 0 gradients, 8.1 GFLOPs\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:01<00:00, 1.61it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " all 93 115 0.943 0.897 0.951 0.804\n", + " Tom 56 64 0.965 0.853 0.935 0.801\n", + " Garfield 48 51 0.922 0.941 0.966 0.806\n", + "Speed: 2.1ms preprocess, 1.8ms inference, 0.0ms loss, 2.5ms postprocess per image\n", + "Results saved to \u001b[1mruns\\detect\\cat_detection\u001b[0m\n" + ] + }, + { + "data": { + "text/plain": [ + "ultralytics.utils.metrics.DetMetrics object with attributes:\n", + "\n", + "ap_class_index: array([0, 1])\n", + "box: ultralytics.utils.metrics.Metric object\n", + "confusion_matrix: \n", + "curves: ['Precision-Recall(B)', 'F1-Confidence(B)', 'Precision-Confidence(B)', 'Recall-Confidence(B)']\n", + "curves_results: [[array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", + " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", + " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", + " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", + " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", + " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", + " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", + " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", + " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", + " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", + " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", + " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", + " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", + " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", + " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", + " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", + " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", + " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", + " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", + " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", + " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", + " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", + " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", + " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", + " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", + " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", + " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", + " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", + " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", + " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", + " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", + " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", + " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", + " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", + " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", + " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", + " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", + " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", + " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", + " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", + " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", + " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 1, 1, 1, ..., 0.0084524, 0.0042262, 0],\n", + " [ 1, 1, 1, ..., 0.31677, 0.31677, 0]]), 'Recall', 'Precision'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", + " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", + " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", + " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", + " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", + " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", + " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", + " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", + " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", + " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", + " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", + " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", + " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", + " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", + " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", + " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", + " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", + " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", + " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", + " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", + " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", + " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", + " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", + " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", + " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", + " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", + " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", + " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", + " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", + " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", + " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", + " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", + " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", + " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", + " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", + " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", + " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", + " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", + " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", + " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", + " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", + " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.12365, 0.12365, 0.39479, ..., 0, 0, 0],\n", + " [ 0.1351, 0.1351, 0.3119, ..., 0, 0, 0]]), 'Confidence', 'F1'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", + " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", + " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", + " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", + " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", + " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", + " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", + " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", + " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", + " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", + " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", + " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", + " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", + " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", + " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", + " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", + " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", + " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", + " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", + " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", + " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", + " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", + " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", + " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", + " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", + " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", + " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", + " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", + " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", + " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", + " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", + " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", + " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", + " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", + " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", + " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", + " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", + " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", + " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", + " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", + " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", + " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.065969, 0.065969, 0.24791, ..., 1, 1, 1],\n", + " [ 0.072443, 0.072443, 0.18476, ..., 1, 1, 1]]), 'Confidence', 'Precision'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", + " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", + " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", + " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", + " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", + " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", + " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", + " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", + " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", + " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", + " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", + " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", + " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", + " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", + " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", + " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", + " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", + " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", + " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", + " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", + " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", + " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", + " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", + " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", + " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", + " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", + " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", + " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", + " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", + " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", + " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", + " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", + " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", + " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", + " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", + " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", + " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", + " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", + " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", + " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", + " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", + " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.98438, 0.98438, 0.96875, ..., 0, 0, 0],\n", + " [ 1, 1, 1, ..., 0, 0, 0]]), 'Confidence', 'Recall']]\n", + "fitness: 0.8184726558170026\n", + "keys: ['metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)']\n", + "maps: array([ 0.80124, 0.80629])\n", + "names: {0: 'Tom', 1: 'Garfield'}\n", + "plot: True\n", + "results_dict: {'metrics/precision(B)': 0.943492773503834, 'metrics/recall(B)': 0.8970135031545707, 'metrics/mAP50(B)': 0.950867345126137, 'metrics/mAP50-95(B)': 0.8037621347826542, 'fitness': 0.8184726558170026}\n", + "save_dir: WindowsPath('runs/detect/cat_detection')\n", + "speed: {'preprocess': 2.1078073850242043, 'inference': 1.8489976083078692, 'loss': 0.0, 'postprocess': 2.4962194504276396}\n", + "task: 'detect'" + ] + }, + "execution_count": 89, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.train(\n", + " data=\"cats_dataset.yaml\", # Path to the dataset YAML file\n", + " epochs=50, # Number of training epochs\n", + " imgsz=640, # Image size (default is 640x640)\n", + " batch=16, # Batch size (adjust based on your GPU memory)\n", + " name=\"cat_detection\", # Name of the training run\n", + " workers=4 # Number of data-loading workers (adjust as needed)\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ultralytics 8.3.65 Python-3.10.9 torch-2.5.1+cu124 CUDA:0 (NVIDIA GeForce RTX 4060 Ti, 8187MiB)\n", + "Model summary (fused): 168 layers, 3,006,038 parameters, 0 gradients, 8.1 GFLOPs\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[34m\u001b[1mval: \u001b[0mScanning E:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\labels\\val.cache... 93 images, 0 backgrounds, 0 corrupt: 100%|██████████| 93/93 [00:00\n", + "curves: ['Precision-Recall(B)', 'F1-Confidence(B)', 'Precision-Confidence(B)', 'Recall-Confidence(B)']\n", + "curves_results: [[array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", + " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", + " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", + " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", + " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", + " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", + " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", + " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", + " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", + " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", + " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", + " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", + " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", + " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", + " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", + " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", + " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", + " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", + " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", + " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", + " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", + " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", + " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", + " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", + " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", + " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", + " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", + " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", + " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", + " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", + " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", + " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", + " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", + " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", + " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", + " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", + " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", + " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", + " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", + " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", + " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", + " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 1, 1, 1, ..., 0.0089789, 0.0044895, 0],\n", + " [ 1, 1, 1, ..., 0.22667, 0.22667, 0]]), 'Recall', 'Precision'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", + " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", + " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", + " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", + " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", + " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", + " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", + " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", + " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", + " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", + " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", + " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", + " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", + " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", + " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", + " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", + " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", + " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", + " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", + " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", + " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", + " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", + " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", + " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", + " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", + " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", + " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", + " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", + " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", + " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", + " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", + " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", + " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", + " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", + " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", + " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", + " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", + " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", + " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", + " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", + " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", + " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.13084, 0.13103, 0.40692, ..., 0, 0, 0],\n", + " [ 0.13178, 0.13206, 0.29857, ..., 0, 0, 0]]), 'Confidence', 'F1'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", + " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", + " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", + " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", + " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", + " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", + " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", + " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", + " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", + " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", + " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", + " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", + " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", + " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", + " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", + " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", + " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", + " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", + " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", + " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", + " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", + " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", + " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", + " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", + " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", + " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", + " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", + " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", + " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", + " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", + " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", + " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", + " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", + " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", + " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", + " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", + " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", + " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", + " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", + " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", + " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", + " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.070078, 0.070185, 0.25755, ..., 1, 1, 1],\n", + " [ 0.070539, 0.070697, 0.17548, ..., 1, 1, 1]]), 'Confidence', 'Precision'], [array([ 0, 0.001001, 0.002002, 0.003003, 0.004004, 0.005005, 0.006006, 0.007007, 0.008008, 0.009009, 0.01001, 0.011011, 0.012012, 0.013013, 0.014014, 0.015015, 0.016016, 0.017017, 0.018018, 0.019019, 0.02002, 0.021021, 0.022022, 0.023023,\n", + " 0.024024, 0.025025, 0.026026, 0.027027, 0.028028, 0.029029, 0.03003, 0.031031, 0.032032, 0.033033, 0.034034, 0.035035, 0.036036, 0.037037, 0.038038, 0.039039, 0.04004, 0.041041, 0.042042, 0.043043, 0.044044, 0.045045, 0.046046, 0.047047,\n", + " 0.048048, 0.049049, 0.05005, 0.051051, 0.052052, 0.053053, 0.054054, 0.055055, 0.056056, 0.057057, 0.058058, 0.059059, 0.06006, 0.061061, 0.062062, 0.063063, 0.064064, 0.065065, 0.066066, 0.067067, 0.068068, 0.069069, 0.07007, 0.071071,\n", + " 0.072072, 0.073073, 0.074074, 0.075075, 0.076076, 0.077077, 0.078078, 0.079079, 0.08008, 0.081081, 0.082082, 0.083083, 0.084084, 0.085085, 0.086086, 0.087087, 0.088088, 0.089089, 0.09009, 0.091091, 0.092092, 0.093093, 0.094094, 0.095095,\n", + " 0.096096, 0.097097, 0.098098, 0.099099, 0.1001, 0.1011, 0.1021, 0.1031, 0.1041, 0.10511, 0.10611, 0.10711, 0.10811, 0.10911, 0.11011, 0.11111, 0.11211, 0.11311, 0.11411, 0.11512, 0.11612, 0.11712, 0.11812, 0.11912,\n", + " 0.12012, 0.12112, 0.12212, 0.12312, 0.12412, 0.12513, 0.12613, 0.12713, 0.12813, 0.12913, 0.13013, 0.13113, 0.13213, 0.13313, 0.13413, 0.13514, 0.13614, 0.13714, 0.13814, 0.13914, 0.14014, 0.14114, 0.14214, 0.14314,\n", + " 0.14414, 0.14515, 0.14615, 0.14715, 0.14815, 0.14915, 0.15015, 0.15115, 0.15215, 0.15315, 0.15415, 0.15516, 0.15616, 0.15716, 0.15816, 0.15916, 0.16016, 0.16116, 0.16216, 0.16316, 0.16416, 0.16517, 0.16617, 0.16717,\n", + " 0.16817, 0.16917, 0.17017, 0.17117, 0.17217, 0.17317, 0.17417, 0.17518, 0.17618, 0.17718, 0.17818, 0.17918, 0.18018, 0.18118, 0.18218, 0.18318, 0.18418, 0.18519, 0.18619, 0.18719, 0.18819, 0.18919, 0.19019, 0.19119,\n", + " 0.19219, 0.19319, 0.19419, 0.1952, 0.1962, 0.1972, 0.1982, 0.1992, 0.2002, 0.2012, 0.2022, 0.2032, 0.2042, 0.20521, 0.20621, 0.20721, 0.20821, 0.20921, 0.21021, 0.21121, 0.21221, 0.21321, 0.21421, 0.21522,\n", + " 0.21622, 0.21722, 0.21822, 0.21922, 0.22022, 0.22122, 0.22222, 0.22322, 0.22422, 0.22523, 0.22623, 0.22723, 0.22823, 0.22923, 0.23023, 0.23123, 0.23223, 0.23323, 0.23423, 0.23524, 0.23624, 0.23724, 0.23824, 0.23924,\n", + " 0.24024, 0.24124, 0.24224, 0.24324, 0.24424, 0.24525, 0.24625, 0.24725, 0.24825, 0.24925, 0.25025, 0.25125, 0.25225, 0.25325, 0.25425, 0.25526, 0.25626, 0.25726, 0.25826, 0.25926, 0.26026, 0.26126, 0.26226, 0.26326,\n", + " 0.26426, 0.26527, 0.26627, 0.26727, 0.26827, 0.26927, 0.27027, 0.27127, 0.27227, 0.27327, 0.27427, 0.27528, 0.27628, 0.27728, 0.27828, 0.27928, 0.28028, 0.28128, 0.28228, 0.28328, 0.28428, 0.28529, 0.28629, 0.28729,\n", + " 0.28829, 0.28929, 0.29029, 0.29129, 0.29229, 0.29329, 0.29429, 0.2953, 0.2963, 0.2973, 0.2983, 0.2993, 0.3003, 0.3013, 0.3023, 0.3033, 0.3043, 0.30531, 0.30631, 0.30731, 0.30831, 0.30931, 0.31031, 0.31131,\n", + " 0.31231, 0.31331, 0.31431, 0.31532, 0.31632, 0.31732, 0.31832, 0.31932, 0.32032, 0.32132, 0.32232, 0.32332, 0.32432, 0.32533, 0.32633, 0.32733, 0.32833, 0.32933, 0.33033, 0.33133, 0.33233, 0.33333, 0.33433, 0.33534,\n", + " 0.33634, 0.33734, 0.33834, 0.33934, 0.34034, 0.34134, 0.34234, 0.34334, 0.34434, 0.34535, 0.34635, 0.34735, 0.34835, 0.34935, 0.35035, 0.35135, 0.35235, 0.35335, 0.35435, 0.35536, 0.35636, 0.35736, 0.35836, 0.35936,\n", + " 0.36036, 0.36136, 0.36236, 0.36336, 0.36436, 0.36537, 0.36637, 0.36737, 0.36837, 0.36937, 0.37037, 0.37137, 0.37237, 0.37337, 0.37437, 0.37538, 0.37638, 0.37738, 0.37838, 0.37938, 0.38038, 0.38138, 0.38238, 0.38338,\n", + " 0.38438, 0.38539, 0.38639, 0.38739, 0.38839, 0.38939, 0.39039, 0.39139, 0.39239, 0.39339, 0.39439, 0.3954, 0.3964, 0.3974, 0.3984, 0.3994, 0.4004, 0.4014, 0.4024, 0.4034, 0.4044, 0.40541, 0.40641, 0.40741,\n", + " 0.40841, 0.40941, 0.41041, 0.41141, 0.41241, 0.41341, 0.41441, 0.41542, 0.41642, 0.41742, 0.41842, 0.41942, 0.42042, 0.42142, 0.42242, 0.42342, 0.42442, 0.42543, 0.42643, 0.42743, 0.42843, 0.42943, 0.43043, 0.43143,\n", + " 0.43243, 0.43343, 0.43443, 0.43544, 0.43644, 0.43744, 0.43844, 0.43944, 0.44044, 0.44144, 0.44244, 0.44344, 0.44444, 0.44545, 0.44645, 0.44745, 0.44845, 0.44945, 0.45045, 0.45145, 0.45245, 0.45345, 0.45445, 0.45546,\n", + " 0.45646, 0.45746, 0.45846, 0.45946, 0.46046, 0.46146, 0.46246, 0.46346, 0.46446, 0.46547, 0.46647, 0.46747, 0.46847, 0.46947, 0.47047, 0.47147, 0.47247, 0.47347, 0.47447, 0.47548, 0.47648, 0.47748, 0.47848, 0.47948,\n", + " 0.48048, 0.48148, 0.48248, 0.48348, 0.48448, 0.48549, 0.48649, 0.48749, 0.48849, 0.48949, 0.49049, 0.49149, 0.49249, 0.49349, 0.49449, 0.4955, 0.4965, 0.4975, 0.4985, 0.4995, 0.5005, 0.5015, 0.5025, 0.5035,\n", + " 0.5045, 0.50551, 0.50651, 0.50751, 0.50851, 0.50951, 0.51051, 0.51151, 0.51251, 0.51351, 0.51451, 0.51552, 0.51652, 0.51752, 0.51852, 0.51952, 0.52052, 0.52152, 0.52252, 0.52352, 0.52452, 0.52553, 0.52653, 0.52753,\n", + " 0.52853, 0.52953, 0.53053, 0.53153, 0.53253, 0.53353, 0.53453, 0.53554, 0.53654, 0.53754, 0.53854, 0.53954, 0.54054, 0.54154, 0.54254, 0.54354, 0.54454, 0.54555, 0.54655, 0.54755, 0.54855, 0.54955, 0.55055, 0.55155,\n", + " 0.55255, 0.55355, 0.55455, 0.55556, 0.55656, 0.55756, 0.55856, 0.55956, 0.56056, 0.56156, 0.56256, 0.56356, 0.56456, 0.56557, 0.56657, 0.56757, 0.56857, 0.56957, 0.57057, 0.57157, 0.57257, 0.57357, 0.57457, 0.57558,\n", + " 0.57658, 0.57758, 0.57858, 0.57958, 0.58058, 0.58158, 0.58258, 0.58358, 0.58458, 0.58559, 0.58659, 0.58759, 0.58859, 0.58959, 0.59059, 0.59159, 0.59259, 0.59359, 0.59459, 0.5956, 0.5966, 0.5976, 0.5986, 0.5996,\n", + " 0.6006, 0.6016, 0.6026, 0.6036, 0.6046, 0.60561, 0.60661, 0.60761, 0.60861, 0.60961, 0.61061, 0.61161, 0.61261, 0.61361, 0.61461, 0.61562, 0.61662, 0.61762, 0.61862, 0.61962, 0.62062, 0.62162, 0.62262, 0.62362,\n", + " 0.62462, 0.62563, 0.62663, 0.62763, 0.62863, 0.62963, 0.63063, 0.63163, 0.63263, 0.63363, 0.63463, 0.63564, 0.63664, 0.63764, 0.63864, 0.63964, 0.64064, 0.64164, 0.64264, 0.64364, 0.64464, 0.64565, 0.64665, 0.64765,\n", + " 0.64865, 0.64965, 0.65065, 0.65165, 0.65265, 0.65365, 0.65465, 0.65566, 0.65666, 0.65766, 0.65866, 0.65966, 0.66066, 0.66166, 0.66266, 0.66366, 0.66466, 0.66567, 0.66667, 0.66767, 0.66867, 0.66967, 0.67067, 0.67167,\n", + " 0.67267, 0.67367, 0.67467, 0.67568, 0.67668, 0.67768, 0.67868, 0.67968, 0.68068, 0.68168, 0.68268, 0.68368, 0.68468, 0.68569, 0.68669, 0.68769, 0.68869, 0.68969, 0.69069, 0.69169, 0.69269, 0.69369, 0.69469, 0.6957,\n", + " 0.6967, 0.6977, 0.6987, 0.6997, 0.7007, 0.7017, 0.7027, 0.7037, 0.7047, 0.70571, 0.70671, 0.70771, 0.70871, 0.70971, 0.71071, 0.71171, 0.71271, 0.71371, 0.71471, 0.71572, 0.71672, 0.71772, 0.71872, 0.71972,\n", + " 0.72072, 0.72172, 0.72272, 0.72372, 0.72472, 0.72573, 0.72673, 0.72773, 0.72873, 0.72973, 0.73073, 0.73173, 0.73273, 0.73373, 0.73473, 0.73574, 0.73674, 0.73774, 0.73874, 0.73974, 0.74074, 0.74174, 0.74274, 0.74374,\n", + " 0.74474, 0.74575, 0.74675, 0.74775, 0.74875, 0.74975, 0.75075, 0.75175, 0.75275, 0.75375, 0.75475, 0.75576, 0.75676, 0.75776, 0.75876, 0.75976, 0.76076, 0.76176, 0.76276, 0.76376, 0.76476, 0.76577, 0.76677, 0.76777,\n", + " 0.76877, 0.76977, 0.77077, 0.77177, 0.77277, 0.77377, 0.77477, 0.77578, 0.77678, 0.77778, 0.77878, 0.77978, 0.78078, 0.78178, 0.78278, 0.78378, 0.78478, 0.78579, 0.78679, 0.78779, 0.78879, 0.78979, 0.79079, 0.79179,\n", + " 0.79279, 0.79379, 0.79479, 0.7958, 0.7968, 0.7978, 0.7988, 0.7998, 0.8008, 0.8018, 0.8028, 0.8038, 0.8048, 0.80581, 0.80681, 0.80781, 0.80881, 0.80981, 0.81081, 0.81181, 0.81281, 0.81381, 0.81481, 0.81582,\n", + " 0.81682, 0.81782, 0.81882, 0.81982, 0.82082, 0.82182, 0.82282, 0.82382, 0.82482, 0.82583, 0.82683, 0.82783, 0.82883, 0.82983, 0.83083, 0.83183, 0.83283, 0.83383, 0.83483, 0.83584, 0.83684, 0.83784, 0.83884, 0.83984,\n", + " 0.84084, 0.84184, 0.84284, 0.84384, 0.84484, 0.84585, 0.84685, 0.84785, 0.84885, 0.84985, 0.85085, 0.85185, 0.85285, 0.85385, 0.85485, 0.85586, 0.85686, 0.85786, 0.85886, 0.85986, 0.86086, 0.86186, 0.86286, 0.86386,\n", + " 0.86486, 0.86587, 0.86687, 0.86787, 0.86887, 0.86987, 0.87087, 0.87187, 0.87287, 0.87387, 0.87487, 0.87588, 0.87688, 0.87788, 0.87888, 0.87988, 0.88088, 0.88188, 0.88288, 0.88388, 0.88488, 0.88589, 0.88689, 0.88789,\n", + " 0.88889, 0.88989, 0.89089, 0.89189, 0.89289, 0.89389, 0.89489, 0.8959, 0.8969, 0.8979, 0.8989, 0.8999, 0.9009, 0.9019, 0.9029, 0.9039, 0.9049, 0.90591, 0.90691, 0.90791, 0.90891, 0.90991, 0.91091, 0.91191,\n", + " 0.91291, 0.91391, 0.91491, 0.91592, 0.91692, 0.91792, 0.91892, 0.91992, 0.92092, 0.92192, 0.92292, 0.92392, 0.92492, 0.92593, 0.92693, 0.92793, 0.92893, 0.92993, 0.93093, 0.93193, 0.93293, 0.93393, 0.93493, 0.93594,\n", + " 0.93694, 0.93794, 0.93894, 0.93994, 0.94094, 0.94194, 0.94294, 0.94394, 0.94494, 0.94595, 0.94695, 0.94795, 0.94895, 0.94995, 0.95095, 0.95195, 0.95295, 0.95395, 0.95495, 0.95596, 0.95696, 0.95796, 0.95896, 0.95996,\n", + " 0.96096, 0.96196, 0.96296, 0.96396, 0.96496, 0.96597, 0.96697, 0.96797, 0.96897, 0.96997, 0.97097, 0.97197, 0.97297, 0.97397, 0.97497, 0.97598, 0.97698, 0.97798, 0.97898, 0.97998, 0.98098, 0.98198, 0.98298, 0.98398,\n", + " 0.98498, 0.98599, 0.98699, 0.98799, 0.98899, 0.98999, 0.99099, 0.99199, 0.99299, 0.99399, 0.99499, 0.996, 0.997, 0.998, 0.999, 1]), array([[ 0.98438, 0.98438, 0.96875, ..., 0, 0, 0],\n", + " [ 1, 1, 1, ..., 0, 0, 0]]), 'Confidence', 'Recall']]\n", + "fitness: 0.8126186178355472\n", + "keys: ['metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)']\n", + "maps: array([ 0.78935, 0.80573])\n", + "names: {0: 'Tom', 1: 'Garfield'}\n", + "plot: True\n", + "results_dict: {'metrics/precision(B)': 0.9430115651391962, 'metrics/recall(B)': 0.8975594798061068, 'metrics/mAP50(B)': 0.9483266511721926, 'metrics/mAP50-95(B)': 0.7975399474648087, 'fitness': 0.8126186178355472}\n", + "save_dir: WindowsPath('runs/detect/val')\n", + "speed: {'preprocess': 1.6566168877386276, 'inference': 4.408738946401944, 'loss': 0.0, 'postprocess': 3.1229296038227696}\n", + "task: 'detect'\n" + ] + } + ], + "source": [ + "model = YOLO(\"runs/detect/cat_detection/weights/best.pt\")\n", + "# Validate on the validation dataset\n", + "metrics = model.val(data=\"cats_dataset.yaml\")\n", + "print(metrics)" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "image 1/1 e:\\Facultate\\Master\\Anul 1\\CV\\Project\\dataset\\Cats\\20250122_142949.jpg: 640x480 1 Tom, 1 Garfield, 25.0ms\n", + "Speed: 4.0ms preprocess, 25.0ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 480)\n", + "Results saved to \u001b[1mruns\\detect\\predict3\u001b[0m\n", + "ultralytics.engine.results.Results object with attributes:\n", + "\n", + "boxes: ultralytics.engine.results.Boxes object\n", + "keypoints: None\n", + "masks: None\n", + "names: {0: 'Tom', 1: 'Garfield'}\n", + "obb: None\n", + "orig_img: array([[[ 64, 50, 38],\n", + " [ 67, 53, 41],\n", + " [ 69, 55, 43],\n", + " ...,\n", + " [ 90, 122, 133],\n", + " [ 87, 119, 130],\n", + " [ 85, 117, 128]],\n", + "\n", + " [[ 63, 49, 37],\n", + " [ 66, 52, 40],\n", + " [ 70, 56, 44],\n", + " ...,\n", + " [ 70, 102, 113],\n", + " [ 67, 99, 110],\n", + " [ 72, 104, 115]],\n", + "\n", + " [[ 66, 52, 40],\n", + " [ 67, 53, 41],\n", + " [ 71, 57, 45],\n", + " ...,\n", + " [ 53, 85, 96],\n", + " [ 51, 83, 94],\n", + " [ 58, 90, 101]],\n", + "\n", + " ...,\n", + "\n", + " [[144, 146, 146],\n", + " [147, 149, 149],\n", + " [150, 152, 152],\n", + " ...,\n", + " [108, 112, 113],\n", + " [108, 112, 113],\n", + " [111, 115, 116]],\n", + "\n", + " [[144, 146, 146],\n", + " [146, 148, 148],\n", + " [148, 150, 150],\n", + " ...,\n", + " [104, 108, 109],\n", + " [107, 111, 112],\n", + " [109, 113, 114]],\n", + "\n", + " [[148, 150, 150],\n", + " [148, 150, 150],\n", + " [149, 151, 151],\n", + " ...,\n", + " [103, 107, 108],\n", + " [105, 109, 110],\n", + " [107, 111, 112]]], dtype=uint8)\n", + "orig_shape: (4000, 3000)\n", + "path: 'e:\\\\Facultate\\\\Master\\\\Anul 1\\\\CV\\\\Project\\\\dataset\\\\Cats\\\\20250122_142949.jpg'\n", + "probs: None\n", + "save_dir: 'runs\\\\detect\\\\predict3'\n", + "speed: {'preprocess': 4.025697708129883, 'inference': 25.003910064697266, 'postprocess': 5.973577499389648}\n" + ] + } + ], + "source": [ + "results = model.predict(source=\"dataset/Cats/20250122_142949.jpg\", save=True, conf=0.5)\n", + "\n", + "# View the results\n", + "for result in results:\n", + " print(result)" + ] } ], "metadata": { diff --git a/cats_dataset.yaml b/cats_dataset.yaml new file mode 100644 index 0000000..b973e37 --- /dev/null +++ b/cats_dataset.yaml @@ -0,0 +1,6 @@ +path: E:/Facultate/Master/Anul 1/CV/Project/dataset # Root directory of your dataset +train: images/train # Train image directory +val: images/val # Validation image directory + +nc: 2 # Number of classes (2 cats in your case) +names: ["Tom", "Garfield"] # Class names corresponding to cluster labels diff --git a/dataset_download.py b/dataset_download.py index e69de29..f78e4ac 100644 --- a/dataset_download.py +++ b/dataset_download.py @@ -0,0 +1,2 @@ +import tensorflow as tf +import tensorflow_datasets as tfds diff --git a/runs/detect/cat_detection/F1_curve.png b/runs/detect/cat_detection/F1_curve.png new file mode 100644 index 0000000..0be435f Binary files /dev/null and b/runs/detect/cat_detection/F1_curve.png differ diff --git a/runs/detect/cat_detection/PR_curve.png b/runs/detect/cat_detection/PR_curve.png new file mode 100644 index 0000000..4d6c8f4 Binary files /dev/null and b/runs/detect/cat_detection/PR_curve.png differ diff --git a/runs/detect/cat_detection/P_curve.png b/runs/detect/cat_detection/P_curve.png new file mode 100644 index 0000000..330ae7b Binary files /dev/null and b/runs/detect/cat_detection/P_curve.png differ diff --git a/runs/detect/cat_detection/R_curve.png b/runs/detect/cat_detection/R_curve.png new file mode 100644 index 0000000..4104aef Binary files /dev/null and b/runs/detect/cat_detection/R_curve.png differ diff --git a/runs/detect/cat_detection/args.yaml b/runs/detect/cat_detection/args.yaml new file mode 100644 index 0000000..765dfe3 --- /dev/null +++ b/runs/detect/cat_detection/args.yaml @@ -0,0 +1,106 @@ +task: detect +mode: train +model: yolov8n.pt +data: cats_dataset.yaml +epochs: 50 +time: null +patience: 100 +batch: 16 +imgsz: 640 +save: true +save_period: -1 +cache: false +device: cuda:0 +workers: 4 +project: null +name: cat_detection +exist_ok: false +pretrained: true +optimizer: auto +verbose: true +seed: 0 +deterministic: true +single_cls: false +rect: false +cos_lr: false +close_mosaic: 10 +resume: false +amp: true +fraction: 1.0 +profile: false +freeze: null +multi_scale: false +overlap_mask: true +mask_ratio: 4 +dropout: 0.0 +val: true +split: val +save_json: false +save_hybrid: false +conf: null +iou: 0.7 +max_det: 300 +half: false +dnn: false +plots: true +source: null +vid_stride: 1 +stream_buffer: false +visualize: false +augment: false +agnostic_nms: false +classes: null +retina_masks: false +embed: null +show: false +save_frames: false +save_txt: false +save_conf: false +save_crop: false +show_labels: true +show_conf: true +show_boxes: true +line_width: null +format: torchscript +keras: false +optimize: false +int8: false +dynamic: false +simplify: true +opset: null +workspace: null +nms: false +lr0: 0.01 +lrf: 0.01 +momentum: 0.937 +weight_decay: 0.0005 +warmup_epochs: 3.0 +warmup_momentum: 0.8 +warmup_bias_lr: 0.1 +box: 7.5 +cls: 0.5 +dfl: 1.5 +pose: 12.0 +kobj: 1.0 +nbs: 64 +hsv_h: 0.015 +hsv_s: 0.7 +hsv_v: 0.4 +degrees: 0.0 +translate: 0.1 +scale: 0.5 +shear: 0.0 +perspective: 0.0 +flipud: 0.0 +fliplr: 0.5 +bgr: 0.0 +mosaic: 1.0 +mixup: 0.0 +copy_paste: 0.0 +copy_paste_mode: flip +auto_augment: randaugment +erasing: 0.4 +crop_fraction: 1.0 +cfg: null +tracker: botsort.yaml +save_dir: runs\detect\cat_detection diff --git a/runs/detect/cat_detection/confusion_matrix.png b/runs/detect/cat_detection/confusion_matrix.png new file mode 100644 index 0000000..49e4d80 Binary files /dev/null and b/runs/detect/cat_detection/confusion_matrix.png differ diff --git a/runs/detect/cat_detection/confusion_matrix_normalized.png b/runs/detect/cat_detection/confusion_matrix_normalized.png new file mode 100644 index 0000000..46137d7 Binary files /dev/null and b/runs/detect/cat_detection/confusion_matrix_normalized.png differ diff --git a/runs/detect/cat_detection/labels.jpg b/runs/detect/cat_detection/labels.jpg new file mode 100644 index 0000000..0f52a47 Binary files /dev/null and b/runs/detect/cat_detection/labels.jpg differ diff --git a/runs/detect/cat_detection/labels_correlogram.jpg b/runs/detect/cat_detection/labels_correlogram.jpg new file mode 100644 index 0000000..7196c01 Binary files /dev/null and b/runs/detect/cat_detection/labels_correlogram.jpg differ diff --git a/runs/detect/cat_detection/results.csv b/runs/detect/cat_detection/results.csv new file mode 100644 index 0000000..d7b0701 --- /dev/null +++ b/runs/detect/cat_detection/results.csv @@ -0,0 +1,51 @@ +epoch,time,train/box_loss,train/cls_loss,train/dfl_loss,metrics/precision(B),metrics/recall(B),metrics/mAP50(B),metrics/mAP50-95(B),val/box_loss,val/cls_loss,val/dfl_loss,lr/pg0,lr/pg1,lr/pg2 +1,41.7603,2.54994,3.18243,2.51221,0.00543,0.60861,0.06066,0.01572,2.88929,3.47453,3.39482,0.00038341,0.00038341,0.00038341 +2,74.996,1.5829,2.20317,1.86498,0.35884,0.31878,0.215,0.07008,2.83816,2.78914,3.14487,0.000767977,0.000767977,0.000767977 +3,108.249,1.38431,1.86215,1.70799,0.62526,0.55407,0.58633,0.31948,1.5763,2.2232,1.98879,0.0011367,0.0011367,0.0011367 +4,138.046,1.24139,1.6498,1.58007,0.7061,0.69734,0.76866,0.51716,1.19157,1.55139,1.55139,0.00148958,0.00148958,0.00148958 +5,177.51,1.12757,1.55872,1.51474,0.8258,0.68903,0.83567,0.49045,1.28558,1.48416,1.67659,0.00153497,0.00153497,0.00153497 +6,213.163,1.05271,1.361,1.43795,0.81593,0.69091,0.824,0.55616,1.09991,1.34204,1.52969,0.00150197,0.00150197,0.00150197 +7,242.458,1.05077,1.38409,1.44457,0.79956,0.69286,0.79212,0.49044,1.22665,1.41692,1.60125,0.00146896,0.00146896,0.00146896 +8,270.991,1.01271,1.35862,1.41917,0.82757,0.7106,0.86499,0.62663,0.94366,1.22926,1.39691,0.00143595,0.00143595,0.00143595 +9,296.441,0.91474,1.24452,1.34834,0.85085,0.77679,0.87678,0.61598,1.03542,1.1298,1.49551,0.00140295,0.00140295,0.00140295 +10,323.314,0.86803,1.1113,1.30245,0.7953,0.84163,0.87429,0.64231,0.87863,1.09015,1.28995,0.00136994,0.00136994,0.00136994 +11,348.993,0.87972,1.05537,1.33899,0.87419,0.77573,0.85699,0.65747,0.85251,1.04036,1.27638,0.00133693,0.00133693,0.00133693 +12,374.694,0.92134,1.08425,1.34283,0.90352,0.80431,0.89774,0.69599,0.81858,0.8944,1.23589,0.00130393,0.00130393,0.00130393 +13,400.797,0.88226,1.04856,1.31014,0.88992,0.84843,0.91106,0.68552,0.82365,0.83574,1.26521,0.00127092,0.00127092,0.00127092 +14,427.968,0.81201,0.95926,1.29909,0.91449,0.85523,0.92765,0.71476,0.80232,0.81871,1.23408,0.00123791,0.00123791,0.00123791 +15,454.189,0.79519,0.96168,1.26909,0.84575,0.88301,0.90129,0.68346,0.79181,0.78937,1.24608,0.00120491,0.00120491,0.00120491 +16,479.954,0.86308,0.96065,1.31282,0.88634,0.82399,0.89899,0.70555,0.76829,0.81577,1.23144,0.0011719,0.0011719,0.0011719 +17,506.279,0.85551,0.92718,1.3078,0.87993,0.78278,0.89245,0.6706,0.84912,0.82797,1.25843,0.00113889,0.00113889,0.00113889 +18,534.252,0.84472,0.91935,1.28251,0.84172,0.80875,0.86914,0.64171,0.90884,0.83304,1.34577,0.00110589,0.00110589,0.00110589 +19,561.001,0.82708,0.87588,1.2796,0.7629,0.77727,0.85955,0.67344,0.83244,0.96993,1.28749,0.00107288,0.00107288,0.00107288 +20,598.281,0.77351,0.87018,1.23253,0.92505,0.87549,0.91505,0.73492,0.77467,0.66846,1.24465,0.00103987,0.00103987,0.00103987 +21,624.738,0.7427,0.83641,1.23337,0.89574,0.86978,0.91214,0.71788,0.77596,0.69304,1.2433,0.00100687,0.00100687,0.00100687 +22,653.387,0.75428,0.8537,1.23923,0.90535,0.75404,0.87979,0.71103,0.70279,0.82322,1.19686,0.000973861,0.000973861,0.000973861 +23,677.798,0.73519,0.79982,1.20099,0.93995,0.79148,0.88972,0.69598,0.74002,0.73455,1.21654,0.000940855,0.000940855,0.000940855 +24,703.367,0.71942,0.79011,1.20355,0.91963,0.79657,0.90314,0.70615,0.78578,0.6963,1.24998,0.000907848,0.000907848,0.000907848 +25,728.85,0.75508,0.79804,1.24131,0.9421,0.81162,0.91895,0.72437,0.74649,0.71008,1.22421,0.000874842,0.000874842,0.000874842 +26,755.27,0.68981,0.75245,1.17233,0.90671,0.86121,0.91712,0.73366,0.73208,0.63567,1.22266,0.000841835,0.000841835,0.000841835 +27,778.886,0.70801,0.74326,1.20027,0.95102,0.82554,0.90723,0.6996,0.79841,0.69897,1.22938,0.000808828,0.000808828,0.000808828 +28,804.012,0.69438,0.71202,1.17782,0.94963,0.86504,0.93251,0.75816,0.71698,0.65917,1.21462,0.000775822,0.000775822,0.000775822 +29,827.596,0.68358,0.72711,1.17863,0.94478,0.82232,0.92438,0.74928,0.71748,0.64451,1.18104,0.000742815,0.000742815,0.000742815 +30,850.945,0.69173,0.72918,1.17348,0.91018,0.87057,0.93745,0.76242,0.67573,0.61438,1.15435,0.000709809,0.000709809,0.000709809 +31,875.669,0.66821,0.66905,1.17224,0.95255,0.8251,0.93451,0.77284,0.63139,0.60749,1.11677,0.000676802,0.000676802,0.000676802 +32,901.456,0.65135,0.68664,1.16114,0.9364,0.79458,0.92021,0.74713,0.66189,0.64562,1.14592,0.000643795,0.000643795,0.000643795 +33,926.333,0.63677,0.64844,1.14138,0.92334,0.89741,0.94348,0.78891,0.65211,0.57955,1.13967,0.000610789,0.000610789,0.000610789 +34,949.914,0.66215,0.68526,1.16026,0.96318,0.85524,0.95244,0.78401,0.61719,0.57355,1.12666,0.000577782,0.000577782,0.000577782 +35,973.515,0.64566,0.65378,1.14951,0.97695,0.85901,0.95319,0.78117,0.65163,0.56723,1.15153,0.000544776,0.000544776,0.000544776 +36,997.299,0.60033,0.63096,1.12215,0.90017,0.881,0.9435,0.76913,0.65355,0.57331,1.15214,0.000511769,0.000511769,0.000511769 +37,1022.39,0.6187,0.61173,1.12676,0.95067,0.85356,0.94685,0.77863,0.64569,0.58735,1.14863,0.000478762,0.000478762,0.000478762 +38,1046.51,0.62408,0.64977,1.13398,0.9744,0.83322,0.93891,0.77845,0.63145,0.59304,1.14327,0.000445756,0.000445756,0.000445756 +39,1069.52,0.59965,0.62592,1.12855,0.9327,0.87231,0.92721,0.77809,0.63875,0.59236,1.14363,0.000412749,0.000412749,0.000412749 +40,1093.88,0.60368,0.61713,1.11117,0.96572,0.85427,0.93924,0.78961,0.6273,0.55367,1.11419,0.000379743,0.000379743,0.000379743 +41,1148.05,0.50324,0.62738,1.07458,0.97744,0.80879,0.90839,0.73295,0.72751,0.73311,1.20287,0.000346736,0.000346736,0.000346736 +42,1172.58,0.46432,0.5305,1.0149,0.94972,0.86703,0.94626,0.77272,0.62908,0.57454,1.13127,0.000313729,0.000313729,0.000313729 +43,1196.92,0.45396,0.5091,1.0216,0.95514,0.88087,0.94434,0.79231,0.61548,0.5314,1.11574,0.000280723,0.000280723,0.000280723 +44,1219.38,0.44166,0.46775,0.97879,0.91471,0.89346,0.9397,0.79357,0.60267,0.53682,1.10288,0.000247716,0.000247716,0.000247716 +45,1243.16,0.42041,0.46066,0.9959,0.91382,0.89782,0.94741,0.79596,0.60978,0.52438,1.13124,0.00021471,0.00021471,0.00021471 +46,1265.52,0.40657,0.4481,0.96549,0.93209,0.87258,0.95065,0.80079,0.59726,0.53471,1.11823,0.000181703,0.000181703,0.000181703 +47,1294.23,0.40389,0.43643,0.96607,0.94116,0.88465,0.94829,0.79693,0.585,0.54994,1.09351,0.000148696,0.000148696,0.000148696 +48,1324.01,0.38368,0.40904,0.96912,0.93682,0.89071,0.94641,0.79852,0.5988,0.53865,1.10804,0.00011569,0.00011569,0.00011569 +49,1350.25,0.40215,0.45338,0.99384,0.93855,0.89749,0.94677,0.80032,0.60052,0.53816,1.11297,8.26832e-05,8.26832e-05,8.26832e-05 +50,1373.09,0.40307,0.42498,0.98954,0.94335,0.89709,0.95056,0.80202,0.59766,0.53763,1.11256,4.96766e-05,4.96766e-05,4.96766e-05 diff --git a/runs/detect/cat_detection/results.png b/runs/detect/cat_detection/results.png new file mode 100644 index 0000000..8911317 Binary files /dev/null and b/runs/detect/cat_detection/results.png differ diff --git a/runs/detect/cat_detection/train_batch0.jpg b/runs/detect/cat_detection/train_batch0.jpg new file mode 100644 index 0000000..47772f3 Binary files /dev/null and b/runs/detect/cat_detection/train_batch0.jpg differ diff --git a/runs/detect/cat_detection/train_batch1.jpg b/runs/detect/cat_detection/train_batch1.jpg new file mode 100644 index 0000000..810d9a1 Binary files /dev/null and b/runs/detect/cat_detection/train_batch1.jpg differ diff --git a/runs/detect/cat_detection/train_batch2.jpg b/runs/detect/cat_detection/train_batch2.jpg new file mode 100644 index 0000000..3893b9f Binary files /dev/null and b/runs/detect/cat_detection/train_batch2.jpg differ diff --git a/runs/detect/cat_detection/train_batch960.jpg b/runs/detect/cat_detection/train_batch960.jpg new file mode 100644 index 0000000..b9db69a Binary files /dev/null and b/runs/detect/cat_detection/train_batch960.jpg differ diff --git a/runs/detect/cat_detection/train_batch961.jpg b/runs/detect/cat_detection/train_batch961.jpg new file mode 100644 index 0000000..646af13 Binary files /dev/null and b/runs/detect/cat_detection/train_batch961.jpg differ diff --git a/runs/detect/cat_detection/train_batch962.jpg b/runs/detect/cat_detection/train_batch962.jpg new file mode 100644 index 0000000..64e6504 Binary files /dev/null and b/runs/detect/cat_detection/train_batch962.jpg differ diff --git a/runs/detect/cat_detection/val_batch0_labels.jpg b/runs/detect/cat_detection/val_batch0_labels.jpg new file mode 100644 index 0000000..6813c3e Binary files /dev/null and b/runs/detect/cat_detection/val_batch0_labels.jpg differ diff --git a/runs/detect/cat_detection/val_batch0_pred.jpg b/runs/detect/cat_detection/val_batch0_pred.jpg new file mode 100644 index 0000000..5b0e20e Binary files /dev/null and b/runs/detect/cat_detection/val_batch0_pred.jpg differ diff --git a/runs/detect/cat_detection/val_batch1_labels.jpg b/runs/detect/cat_detection/val_batch1_labels.jpg new file mode 100644 index 0000000..e08876e Binary files /dev/null and b/runs/detect/cat_detection/val_batch1_labels.jpg differ diff --git a/runs/detect/cat_detection/val_batch1_pred.jpg b/runs/detect/cat_detection/val_batch1_pred.jpg new file mode 100644 index 0000000..e3a073c Binary files /dev/null and b/runs/detect/cat_detection/val_batch1_pred.jpg differ diff --git a/runs/detect/cat_detection/val_batch2_labels.jpg b/runs/detect/cat_detection/val_batch2_labels.jpg new file mode 100644 index 0000000..b7e3f9f Binary files /dev/null and b/runs/detect/cat_detection/val_batch2_labels.jpg differ diff --git a/runs/detect/cat_detection/val_batch2_pred.jpg b/runs/detect/cat_detection/val_batch2_pred.jpg new file mode 100644 index 0000000..573d2f2 Binary files /dev/null and b/runs/detect/cat_detection/val_batch2_pred.jpg differ diff --git a/runs/detect/cat_detection/weights/best.pt b/runs/detect/cat_detection/weights/best.pt new file mode 100644 index 0000000..061c32b Binary files /dev/null and b/runs/detect/cat_detection/weights/best.pt differ diff --git a/runs/detect/cat_detection/weights/last.pt b/runs/detect/cat_detection/weights/last.pt new file mode 100644 index 0000000..f12d49b Binary files /dev/null and b/runs/detect/cat_detection/weights/last.pt differ diff --git a/runs/detect/val/F1_curve.png b/runs/detect/val/F1_curve.png new file mode 100644 index 0000000..a88797f Binary files /dev/null and b/runs/detect/val/F1_curve.png differ diff --git a/runs/detect/val/PR_curve.png b/runs/detect/val/PR_curve.png new file mode 100644 index 0000000..9246196 Binary files /dev/null and b/runs/detect/val/PR_curve.png differ diff --git a/runs/detect/val/P_curve.png b/runs/detect/val/P_curve.png new file mode 100644 index 0000000..1feccbf Binary files /dev/null and b/runs/detect/val/P_curve.png differ diff --git a/runs/detect/val/R_curve.png b/runs/detect/val/R_curve.png new file mode 100644 index 0000000..6992814 Binary files /dev/null and b/runs/detect/val/R_curve.png differ diff --git a/runs/detect/val/confusion_matrix.png b/runs/detect/val/confusion_matrix.png new file mode 100644 index 0000000..49e4d80 Binary files /dev/null and b/runs/detect/val/confusion_matrix.png differ diff --git a/runs/detect/val/confusion_matrix_normalized.png b/runs/detect/val/confusion_matrix_normalized.png new file mode 100644 index 0000000..46137d7 Binary files /dev/null and b/runs/detect/val/confusion_matrix_normalized.png differ diff --git a/runs/detect/val/val_batch0_labels.jpg b/runs/detect/val/val_batch0_labels.jpg new file mode 100644 index 0000000..55724a3 Binary files /dev/null and b/runs/detect/val/val_batch0_labels.jpg differ diff --git a/runs/detect/val/val_batch0_pred.jpg b/runs/detect/val/val_batch0_pred.jpg new file mode 100644 index 0000000..4a457bd Binary files /dev/null and b/runs/detect/val/val_batch0_pred.jpg differ diff --git a/runs/detect/val/val_batch1_labels.jpg b/runs/detect/val/val_batch1_labels.jpg new file mode 100644 index 0000000..438fd8b Binary files /dev/null and b/runs/detect/val/val_batch1_labels.jpg differ diff --git a/runs/detect/val/val_batch1_pred.jpg b/runs/detect/val/val_batch1_pred.jpg new file mode 100644 index 0000000..2805926 Binary files /dev/null and b/runs/detect/val/val_batch1_pred.jpg differ diff --git a/runs/detect/val/val_batch2_labels.jpg b/runs/detect/val/val_batch2_labels.jpg new file mode 100644 index 0000000..dccb327 Binary files /dev/null and b/runs/detect/val/val_batch2_labels.jpg differ diff --git a/runs/detect/val/val_batch2_pred.jpg b/runs/detect/val/val_batch2_pred.jpg new file mode 100644 index 0000000..1e71070 Binary files /dev/null and b/runs/detect/val/val_batch2_pred.jpg differ diff --git a/yolo11n.pt b/yolo11n.pt new file mode 100644 index 0000000..45b273b Binary files /dev/null and b/yolo11n.pt differ